forked from v-iashin/MDVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
572 lines (530 loc) · 24.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import argparse
from time import strftime, localtime
from shutil import copytree, ignore_patterns
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils import tensorboard as tensorboard
# import tensorboardX as tensorboard
from model.transformer import SubsAudioVideoTransformer
from dataset.dataset import ActivityNetCaptionsIteratorDataset
from loss.loss import LabelSmoothing, SimpleLossCompute
from scheduler.lr_scheduler import SimpleScheduler
from epoch_loop.run_epoch import training_loop, validation_next_word_loop, greedy_decoder
from epoch_loop.run_epoch import save_model, validation_1by1_loop, average_metrics_in_two_dicts
from utils.utils import timer
class Config(object):
'''
Note: don't change the methods of this class later in code.
'''
def __init__(self, args):
'''
Try not to create anything here: like new forders or something
'''
self.curr_time = strftime('%y%m%d%H%M%S', localtime())
# dataset
self.train_meta_path = args.train_meta_path
self.val_1_meta_path = args.val_1_meta_path
self.val_2_meta_path = args.val_2_meta_path
self.val_prop_meta_path = args.val_prop_meta_path
self.modality = args.modality
self.video_feature_name = args.video_feature_name
self.video_features_path = args.video_features_path
self.filter_video_feats = args.filter_video_feats
self.average_video_feats = args.average_video_feats
self.audio_feature_name = args.audio_feature_name
self.audio_features_path = args.audio_features_path
self.filter_audio_feats = args.filter_audio_feats
self.average_audio_feats = args.average_audio_feats
self.use_categories = args.use_categories
if self.use_categories:
self.video_categories_meta_path = args.video_categories_meta_path
# make them d_video and d_audio
self.d_vid = args.d_vid
self.d_aud = args.d_aud
self.start_token = args.start_token
self.end_token = args.end_token
self.pad_token = args.pad_token
self.max_len = args.max_len
self.min_freq = args.min_freq
# model
self.model = args.model
self.dout_p = args.dout_p
self.N = args.N
self.use_linear_embedder = args.use_linear_embedder
if args.use_linear_embedder:
self.d_model_video = args.d_model_video
self.d_model_audio = args.d_model_audio
else:
self.d_model_video = self.d_vid
self.d_model_audio = self.d_aud
self.d_model_subs = args.d_model_subs
if self.model == 'transformer':
self.H = args.H
self.d_ff_video = args.d_ff_video
self.d_ff_audio = args.d_ff_audio
self.d_ff_subs = args.d_ff_subs
if self.use_categories:
self.d_cat = args.d_cat
elif self.model == 'bi_gru':
pass
else:
raise Exception(f'Undefined model: "{self.model}"')
# training
self.device_ids = args.device_ids
self.device = f'cuda:{self.device_ids[0]}'
self.train_batch_size = args.B * len(self.device_ids)
self.inference_batch_size = args.inf_B_coeff * self.train_batch_size
self.start_epoch = args.start_epoch # todo: pretraining
self.epoch_num = args.epoch_num
self.one_by_one_starts_at = args.one_by_one_starts_at
self.early_stop_after = args.early_stop_after
# criterion
self.criterion = args.criterion
self.smoothing = args.smoothing # 0 == cross entropy
# optimizer
self.optimizer = args.optimizer
if self.optimizer == 'adam':
self.beta1, self.beta2 = args.betas
self.eps = args.eps
else:
raise Exception(f'Undefined optimizer: "{self.optimizer}"')
# lr scheduler
self.scheduler = args.scheduler
if self.scheduler == 'attention_is_all_you_need':
self.lr_coeff = args.lr_coeff
self.warmup_steps = args.warmup_steps
elif self.scheduler == 'constant':
self.lr = args.lr
else:
raise Exception(f'Undefined scheduler: "{self.scheduler}"')
# evaluation
self.reference_paths = args.reference_paths
self.tIoUs = args.tIoUs
self.max_prop_per_vid = args.max_prop_per_vid
self.verbose_evaluation = args.verbose_evaluation
# logging
self.to_log = args.to_log
self.videos_to_monitor = args.videos_to_monitor
if args.to_log:
self.log_dir = args.log_dir
self.checkpoint_dir = self.log_dir # the same yes
exper_name = self.make_experiment_name()
self.comment = args.comment
self.log_path = os.path.join(self.log_dir, exper_name)
self.model_checkpoint_path = os.path.join(self.checkpoint_dir, exper_name)
else:
self.log_dir = None
self.log_path = None
def make_experiment_name(self):
return self.curr_time[2:]
def get_params(self, out_type):
if out_type == 'md_table':
table = '| Parameter | Value | \n'
table += '|-----------|-------| \n'
for par, val in vars(self).items():
table += f'| {par} | {val}| \n'
return table
elif out_type == 'dict':
params_to_filter = [
'model_checkpoint_path', 'log_path', 'comment', 'curr_time',
'checkpoint_dir', 'log_dir', 'videos_to_monitor', 'to_log',
'verbose_evaluation', 'tIoUs', 'reference_paths',
'one_by_one_starts_at', 'device', 'device_ids', 'pad_token',
'end_token', 'start_token', 'val_1_meta_path', 'video_feature_name',
'val_2_meta_path', 'train_meta_path', 'betas', 'path'
]
dct = vars(self)
dct = {k: v for k, v in dct.items() if (k not in params_to_filter) and (v is not None)}
return dct
def self_copy(self):
if self.to_log:
# let it be in method's arguments (for TBoard)
self.path = os.path.realpath(__file__)
pwd = os.path.split(self.path)[0]
cp_path = os.path.join(self.model_checkpoint_path, 'wdir_copy')
copytree(pwd, cp_path, ignore=ignore_patterns('todel', 'submodules', '.git'))
def main(cfg):
###########################################################################
######################### Some reminders to print #########################
###########################################################################
if cfg.to_log:
print(f'log_path: {cfg.log_path}')
print(f'model_checkpoint_path: {cfg.model_checkpoint_path}')
###########################################################################
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.cuda.set_device(cfg.device_ids[0])
train_dataset = ActivityNetCaptionsIteratorDataset(
cfg.start_token, cfg.end_token, cfg.pad_token, cfg.min_freq,
cfg.train_batch_size, cfg.video_features_path, cfg.video_feature_name,
cfg.filter_video_feats, cfg.average_video_feats,
cfg.audio_features_path, cfg.audio_feature_name,
cfg.filter_audio_feats, cfg.average_audio_feats,
cfg.train_meta_path, cfg.val_1_meta_path,
cfg.val_2_meta_path, torch.device(cfg.device), 'train', cfg.modality,
cfg.use_categories, props_are_gt=True, get_full_feat=False
)
val_1_dataset = ActivityNetCaptionsIteratorDataset(
cfg.start_token, cfg.end_token, cfg.pad_token, cfg.min_freq,
cfg.inference_batch_size, cfg.video_features_path, cfg.video_feature_name,
cfg.filter_video_feats, cfg.average_video_feats,
cfg.audio_features_path, cfg.audio_feature_name,
cfg.filter_audio_feats, cfg.average_audio_feats, cfg.train_meta_path, cfg.val_1_meta_path,
cfg.val_2_meta_path, torch.device(cfg.device), 'val_1', cfg.modality,
cfg.use_categories, props_are_gt=True, get_full_feat=False
)
val_2_dataset = ActivityNetCaptionsIteratorDataset(
cfg.start_token, cfg.end_token, cfg.pad_token, cfg.min_freq,
cfg.inference_batch_size, cfg.video_features_path, cfg.video_feature_name,
cfg.filter_video_feats, cfg.average_video_feats,
cfg.audio_features_path, cfg.audio_feature_name,
cfg.filter_audio_feats, cfg.average_audio_feats, cfg.train_meta_path, cfg.val_1_meta_path,
cfg.val_2_meta_path, torch.device(cfg.device), 'val_2', cfg.modality,
cfg.use_categories, props_are_gt=True, get_full_feat=False
)
# 'val_1' in phase doesn't really matter because props are for validation set
# cfg.val_1_meta_path -> cfg.val_prop_meta
val_pred_prop_dataset = ActivityNetCaptionsIteratorDataset(
cfg.start_token, cfg.end_token, cfg.pad_token, cfg.min_freq,
cfg.inference_batch_size, cfg.video_features_path, cfg.video_feature_name,
cfg.filter_video_feats, cfg.average_video_feats,
cfg.audio_features_path, cfg.audio_feature_name,
cfg.filter_audio_feats, cfg.average_audio_feats, cfg.train_meta_path,
cfg.val_prop_meta_path,
cfg.val_2_meta_path, torch.device(cfg.device), 'val_1', cfg.modality,
cfg.use_categories, props_are_gt=False, get_full_feat=False
)
# make sure that DataLoader has batch_size = 1!
train_loader = DataLoader(train_dataset, collate_fn=train_dataset.dont_collate)
val_1_loader = DataLoader(val_1_dataset, collate_fn=val_1_dataset.dont_collate)
val_2_loader = DataLoader(val_2_dataset, collate_fn=val_2_dataset.dont_collate)
val_pred_prop_loader = DataLoader(val_pred_prop_dataset, collate_fn=val_2_dataset.dont_collate)
model = SubsAudioVideoTransformer(
train_dataset.trg_voc_size, train_dataset.subs_voc_size,
cfg.d_aud, cfg.d_vid, cfg.d_model_audio, cfg.d_model_video,
cfg.d_model_subs,
cfg.d_ff_audio, cfg.d_ff_video, cfg.d_ff_subs,
cfg.N, cfg.N, cfg.N, cfg.dout_p, cfg.H, cfg.use_linear_embedder
)
criterion = LabelSmoothing(cfg.smoothing, train_dataset.pad_idx)
# lr = 0 here have no impact on training (see lr scheduler)
optimizer = torch.optim.Adam(
model.parameters(), 0, (cfg.beta1, cfg.beta2), cfg.eps
)
lr_scheduler = SimpleScheduler(optimizer, cfg.lr)
loss_compute = SimpleLossCompute(criterion, lr_scheduler)
model.to(torch.device(cfg.device))
# haven't tested for multi GPU for a while -- might not work.
model = torch.nn.DataParallel(model, cfg.device_ids)
param_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'Param Num: {param_num}')
if cfg.to_log:
os.makedirs(cfg.log_path)
os.makedirs(cfg.model_checkpoint_path, exist_ok=True) # handles the case when model_checkpoint_path = log_path
TBoard = tensorboard.SummaryWriter(log_dir=cfg.log_path)
TBoard.add_text('config', cfg.get_params('md_table'), 0)
TBoard.add_text('config/comment', cfg.comment, 0)
TBoard.add_scalar('debug/param_number', param_num, 0)
else:
TBoard = None
# keeping track of the best model
best_metric = 0
# "early stopping" thing
num_epoch_best_metric_unchanged = 0
for epoch in range(cfg.start_epoch, cfg.epoch_num):
num_epoch_best_metric_unchanged += 1
if (num_epoch_best_metric_unchanged == cfg.early_stop_after) or (timer(cfg.curr_time) > 67):
print(f'Early stop at {epoch}: unchanged for {num_epoch_best_metric_unchanged} epochs')
print(f'Current timer: {timer(cfg.curr_time)}')
break
# train
training_loop(
model, train_loader, loss_compute, lr_scheduler, epoch, TBoard,
cfg.modality, cfg.use_categories
)
# validation (next word)
val_1_loss = validation_next_word_loop(
model, val_1_loader, greedy_decoder, loss_compute, lr_scheduler,
epoch, cfg.max_len, cfg.videos_to_monitor, TBoard, cfg.modality,
cfg.use_categories
)
val_2_loss = validation_next_word_loop(
model, val_2_loader, greedy_decoder, loss_compute, lr_scheduler,
epoch, cfg.max_len, cfg.videos_to_monitor, TBoard, cfg.modality,
cfg.use_categories
)
val_loss_avg = (val_1_loss + val_2_loss) / 2
# validation (1-by-1 word)
if epoch >= cfg.one_by_one_starts_at:
# validation with g.t. proposals
val_1_metrics = validation_1by1_loop(
model, val_1_loader, greedy_decoder, loss_compute, lr_scheduler,
epoch, cfg.max_len, cfg.log_path,
cfg.verbose_evaluation, [cfg.reference_paths[0]], cfg.tIoUs,
cfg.max_prop_per_vid, TBoard, cfg.modality, cfg.use_categories,
)
val_2_metrics = validation_1by1_loop(
model, val_2_loader, greedy_decoder, loss_compute, lr_scheduler,
epoch, cfg.max_len, cfg.log_path,
cfg.verbose_evaluation, [cfg.reference_paths[1]], cfg.tIoUs,
cfg.max_prop_per_vid, TBoard, cfg.modality, cfg.use_categories,
)
if cfg.to_log:
# averaging metrics obtained from val_1 and val_2
metrics_avg = average_metrics_in_two_dicts(val_1_metrics, val_2_metrics)
metrics_avg = metrics_avg['Average across tIoUs']
TBoard.add_scalar('metrics/val_loss_avg', val_loss_avg, epoch)
TBoard.add_scalar('metrics/meteor', metrics_avg['METEOR'] * 100, epoch)
TBoard.add_scalar('metrics/bleu4', metrics_avg['Bleu_4'] * 100, epoch)
TBoard.add_scalar('val_avg/bleu3', metrics_avg['Bleu_3'] * 100, epoch)
TBoard.add_scalar('val_avg/bleu2', metrics_avg['Bleu_2'] * 100, epoch)
TBoard.add_scalar('val_avg/bleu1', metrics_avg['Bleu_1'] * 100, epoch)
TBoard.add_scalar('val_avg/rouge_l', metrics_avg['ROUGE_L'] * 100, epoch)
TBoard.add_scalar('val_avg/cider', metrics_avg['CIDEr'] * 100, epoch)
TBoard.add_scalar('val_avg/precision', metrics_avg['Precision'] * 100, epoch)
TBoard.add_scalar('val_avg/recall', metrics_avg['Recall'] * 100, epoch)
# saving the model if it is better than the best so far
if best_metric < metrics_avg['METEOR']:
best_metric = metrics_avg['METEOR']
save_model(
cfg, epoch, model, optimizer, val_1_loss, val_2_loss,
val_1_metrics, val_2_metrics, train_dataset.trg_voc_size
)
# reset the early stopping criterion
num_epoch_best_metric_unchanged = 0
# put it after: so on zeroth epoch it is not zero
TBoard.add_scalar('val_avg/best_metric_meteor', best_metric * 100, epoch)
if cfg.to_log:
# load the best model
best_model_path = os.path.join(cfg.model_checkpoint_path, 'best_model.pt')
checkpoint = torch.load(best_model_path)
model.load_state_dict(checkpoint['model_state_dict'])
val_metrics_pred_prop = validation_1by1_loop(
model, val_pred_prop_loader, greedy_decoder, loss_compute, lr_scheduler,
checkpoint['epoch'], cfg.max_len, cfg.log_path,
cfg.verbose_evaluation, cfg.reference_paths, cfg.tIoUs,
cfg.max_prop_per_vid, TBoard, cfg.modality, cfg.use_categories
)
best_metric_pred_prop = val_metrics_pred_prop['Average across tIoUs']['METEOR']
print(f'best_metric: {best_metric}')
print(f'best_metric_pred_prop: {best_metric_pred_prop}')
TBoard.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run experiment')
parser.add_argument(
'--train_meta_path', type=str, default='./data/train_meta.csv',
help='path to the precalculated train meta file'
)
parser.add_argument(
'--val_1_meta_path', type=str, default='./data/val_1_meta.csv',
help='path to the precalculated val 1 meta file'
)
parser.add_argument(
'--val_2_meta_path', type=str, default='./data/val_2_meta.csv',
help='path to the precalculated val 2 meta file'
)
parser.add_argument(
'--val_prop_meta_path', type=str, default='./data/bafcg_val_100_proposal_result.csv',
help='path to the precalculated proposals on the validation set'
)
parser.add_argument(
'--dont_log', dest='to_log', action='store_false',
help='Prevent logging in the experiment.'
)
parser.add_argument(
'--device_ids', type=int, nargs='+', required=True,
help='device indices separated by a whitespace'
)
parser.add_argument(
'--use_categories', dest='use_categories', action='store_true',
help='whether to condition the model on categories'
)
parser.add_argument(
'--video_categories_meta_path', type=str, default='./data/videoCategoriesMetaUS.json',
help='Path to the categories meta from Youtube API: \
https://developers.google.com/youtube/v3/docs/videoCategories/list'
)
parser.add_argument(
'--d_cat', type=int,
help='size of the category embedding layer'
)
parser.add_argument(
'--modality', type=str, default='subs_audio_video',
choices=['audio', 'video', 'audio_video', 'subs_audio_video'],
)
parser.add_argument('--video_feature_name', type=str, default='i3d')
parser.add_argument(
'--video_features_path', type=str,
default='./data/sub_activitynet_v1-3.i3d_25fps_stack24step24_2stream.hdf5'
)
parser.add_argument('--audio_feature_name', type=str, default='vggish')
parser.add_argument(
'--audio_features_path', type=str, default='./data/sub_activitynet_v1-3.vggish.hdf5'
)
parser.add_argument('--d_vid', type=int, default=1024)
parser.add_argument('--d_aud', type=int, default=128)
parser.add_argument(
'--filter_video_feats', dest='filter_video_feats', action='store_true',
help='filter video features (removes overlap 16/8 -> 16/16).'
)
parser.add_argument(
'--average_video_feats', dest='average_video_feats', action='store_true',
help='averages video features (designed for c3d: 16x4 -> 16 (the same time span)).'
)
parser.add_argument(
'--filter_audio_feats', dest='filter_audio_feats', action='store_true',
help='filter video features (removes overlap 16/8 -> 16/16).'
)
parser.add_argument(
'--average_audio_feats', dest='average_audio_feats', action='store_true',
help='averages audio features.'
)
parser.add_argument(
'--start_token', type=str, default='<s>',
help='starting token'
)
parser.add_argument(
'--end_token', type=str, default='</s>',
help='ending token'
)
parser.add_argument(
'--pad_token', type=str, default='<blank>',
help='padding token'
)
parser.add_argument(
'--max_len', type=int, default=50,
help='maximum size of 1by1 prediction'
)
parser.add_argument(
'--min_freq', type=int, default=1,
help='to be in the vocab a word should appear min_freq times in train dataset'
)
parser.add_argument('--model', type=str, default='transformer')
parser.add_argument('--dout_p', type=float, default=0.1)
parser.add_argument('--N', type=int, default=1, help='number of layers in a model')
parser.add_argument(
'--use_linear_embedder', dest='use_linear_embedder', action='store_true',
help='Whether to include a dense layer between vid features and RNN'
)
parser.add_argument(
'--d_model_video', type=int,
help='If use_linear_embedder is true, this is going to be the d_model size for video model'
)
parser.add_argument(
'--d_model_audio', type=int,
help='If use_linear_embedder is true, this is going to be the d_model size for audio model'
)
parser.add_argument('--d_model_subs', type=int, default=512)
parser.add_argument(
'--H', type=int, default=4,
help='number of heads in multiheaded attention in Transformer'
)
parser.add_argument(
'--d_ff_video', type=int, default=2048,
help='size of the internal layer of PositionwiseFeedForward net in Transformer (Video)'
)
parser.add_argument(
'--d_ff_audio', type=int, default=2048,
help='size of the internal layer of PositionwiseFeedForward net in Transformer (Audio)'
)
parser.add_argument(
'--d_ff_subs', type=int, default=2048,
help='size of the internal layer of PositionwiseFeedForward net in Transformer (Subs)'
)
parser.add_argument(
'--B', type=int, default=28,
help='batch size per a device'
)
parser.add_argument(
'--inf_B_coeff', type=int, default=2,
help='the batch size on inference is inf_B_coeff times the B'
)
parser.add_argument(
'--start_epoch', type=int, default=0, choices=[0],
help='the epoch number to start training (if specified, pretraining a net from start_epoch epoch)'
)
parser.add_argument(
'--epoch_num', type=int, default=45,
help='number of epochs to train'
)
parser.add_argument(
'--one_by_one_starts_at', type=int, default=0,
help='number of epochs to skip before starting 1-by-1 validation'
)
parser.add_argument(
'--early_stop_after', type=int, default=50,
help='number of epochs to wait for best metric to change before stopping'
)
parser.add_argument(
'--criterion', type=str, default='label_smoothing', choices=['label_smoothing'],
help='criterion to measure the loss'
)
parser.add_argument(
'--smoothing', type=float, default=0.7,
help='smoothing coeff (= 0 cross ent loss; -> 1 more smoothing, random labels) must be in [0, 1]'
)
parser.add_argument(
'--optimizer', type=str, default='adam', choices=['adam'],
help='optimizer'
)
parser.add_argument(
'--betas', type=float, nargs=2, default=[0.9, 0.98],
help='beta 1 and beta 2 parameters in adam'
)
parser.add_argument(
'--eps', type=float, default=1e-8,
help='eps parameter in adam'
)
parser.add_argument(
'--scheduler', type=str, default='constant', choices=['attention_is_all_you_need', 'constant'],
help='lr scheduler'
)
parser.add_argument(
'--lr_coeff', type=float,
help='lr scheduler coefficient (if scheduler is attention_is_all_you_need)'
)
parser.add_argument(
'--warmup_steps', type=int,
help='number of "warmup steps" (if scheduler is attention_is_all_you_need)'
)
parser.add_argument('--lr', type=float, default=1e-5, help='lr (if scheduler is constant)')
parser.add_argument(
'--reference_paths', type=str, default=['./data/val_1.json', './data/val_2.json'],
nargs='+',
help='reference paths for 1-by-1 validation'
)
parser.add_argument(
'--tIoUs', type=float, default=[0.3, 0.5, 0.7, 0.9], nargs='+',
help='thresholds for tIoU to be used for 1-by-1 validation'
)
parser.add_argument(
'--max_prop_per_vid', type=int, default=1000,
help='max number of proposal to take into considetation for 1-by-1 validation'
)
parser.add_argument(
'--dont_verbose_evaluation', dest='verbose_evaluation', action='store_false',
help='dont verbose the evaluation server in 1-by-1 validation (no Precision and R)'
)
parser.add_argument('--log_dir', type=str, default='./log/')
parser.add_argument(
'--videos_to_monitor', type=str, nargs='+',
default=['v_GGSY1Qvo990', 'v_bXdq2zI1Ms0', 'v_aLv03Fznf5A'],
help='the videos to monitor on validation loop with 1 by 1 prediction'
)
parser.add_argument('--comment', type=str, default='', help='comment for the experiment')
parser.set_defaults(to_log=True)
parser.set_defaults(filter_video_feats=False)
parser.set_defaults(average_video_feats=False)
parser.set_defaults(filter_audio_feats=False)
parser.set_defaults(average_audio_feats=False)
parser.set_defaults(use_linear_embedder=False)
parser.set_defaults(verbose_evaluation=True)
parser.set_defaults(use_categories=False)
args = parser.parse_args()
# print(args)
cfg = Config(args)
main(cfg)