-
Notifications
You must be signed in to change notification settings - Fork 13
/
validation.py
181 lines (158 loc) · 5.71 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import sys
import argparse
import torch
import json
from tqdm import tqdm
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "tloen/alpaca-lora-7b",
prompt_template: str = "",
validation_data: str = "",
save_file: str = "",
test_number: int = 300
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (base_model), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=1024,
stream_output=False,
max_tokens=2600,
**kwargs,
):
input_before_trunc = tokenizer(input, return_tensors="pt")
input_after_trunc = tokenizer.decode(input_before_trunc['input_ids'].view(-1)[:max_tokens])[3:]
prompt = prompter.generate_prompt(instruction, input_after_trunc)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
if validation_data:
with open(validation_data, 'r', encoding='utf-8') as file:
val_data = json.load(file)
results = []
if not save_file:
save_file = f'{validation_data}-test-results.json'
print(f"Start to validate {validation_data}, save results into {save_file}")
if test_number == 0:
pass
elif test_number < len(val_data):
val_data = val_data[:test_number]
else:
pass
for data_point in tqdm(val_data):
instruction_dp = data_point['instruction']
input_dp = data_point['input']
output = evaluate(instruction_dp, input_dp)
results.append({'instruction': instruction_dp, 'input': input_dp, 'output': output})
with open(save_file, 'w', encoding='utf-8') as file:
json.dump(results, file, ensure_ascii=False, indent=4)
else:
while True:
instruction = input("Input:")
if len(instruction.strip()) == 0:
break
print("Response:", evaluate(instruction))
if __name__ == "__main__":
# parse args
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_weights', default=None, type=str,
help="If None, perform inference on the base model")
parser.add_argument('--val_data', default=None, type=str,
help="")
parser.add_argument('--save', default=None, type=str,
help="If None, perform inference on the base model")
parser.add_argument('--load_8bit', action='store_true',
help='only use CPU for inference')
parser.add_argument('--prompter_name', default="alpaca", type=str,
help="alpaca for v3 and before, ts_test for v4 and after")
args = parser.parse_args()
main(args.load_8bit, args.base_model, args.lora_weights, args.prompter_name, args.val_data, args.save)