Skip to content

Latest commit

 

History

History
155 lines (117 loc) · 4.18 KB

README.md

File metadata and controls

155 lines (117 loc) · 4.18 KB

wikigeolinks

Adrià Mercader -http://amercader.net (@amercader)

A GeoJSON REST service for georeferenced Wikipedia articles, built with MapFish.

It was built around the georeferenced Wikipedia articles dataset that can be downloaded from this website:

http://amercader.net/dev/wikipedia

You will need to import the dataset to a PostGIS database (or any other geodatabase engine supported by GeoAlchemy, though this has not been tested).

Installation

Create and activate a virtual environment:

virtualenv --no-site-packages wikigeolinks
cd wikigeolinks
source bin/activate
easy_install pip

Install the source (will also install the other requirements):

pip install -e git+git://github.com/amercader/wikigeolinks.git#egg=wikigeolinks

Create a configuration file:

cd src/wikigeolinks
paster make-config wikigeolinks development.ini

Edit the database connection string to point to your database containing the georeferenced articles:

sqlalchemy.url = postgresql://<user_name>:<password>@<server>/<database>

Serve the application with the following command:

paster serve --reload development.ini

You should get a GeoJSON response visiting the following URL:

http://localhost:5000/articles

API Overview

Georeferenced articles are returned as GeoJSON Features:

GET http://<server>/articles/<id_or_title>

E.g.:

GET http://<server>/articles/1234
GET http://<server>/articles/United%20States%20Naval%20Observatory

{
    geometry: {
        type: "Point",
        coordinates: [
            -77.066946,
            38.921473
        ]
    },
    id: 1234,
    type: "Feature",
    bbox: [
        -77.066946,
        38.921473,
        -77.066946,
        38.921473
    ],
    properties: {
        links_count: 7,
        title: "United States Naval Observatory"
    }
}

You can use both the numeric id or the article title as indentifiers.

You can perform various queries using the MapFish Protocol on the main endpoint:

GET http://<server>/articles?<query>
  • Search by title:

      GET http://<server>/articles?title__ilike=%tarrag%&attrs=id,title,links_count&queryable=title&order_by=links_count&dir=desc&limit=30
    
  • Search by location:

      GET http://<server>/articles?lon=-1.60&lat=54.98&tolerance=0.5&order_by=links_count&dir=desc&limit=30
    
  • Search by bounding box:

      GET http://<server>/articles?bbox=5,50,7,60
    

All these queries return a FeatureCollection of georeferenced articles.

{
    type: "FeatureCollection",
    features: [
        {
            geometry: {
                type: "Point",
                coordinates: [
                    1.25,
                    41.13333333333333
                ]
            },
            id: 47441,
            type: "Feature",
            bbox: [
                1.25,
                41.13333333333333,
                1.25,
                41.13333333333333
            ],
            properties: {
                links_count: 13,
                title: "Camp de Tarragona"
            }
        },
        {
            geometry: {
                type: "Point",
                    coordinates: [
                        1.2740638888888889,
                        41.19218055555555
                    ]
            },
            id: 172375,
            type: "Feature",
            bbox: [
                1.2740638888888889,
                41.19218055555555,
                1.2740638888888889,
                41.19218055555555
            ],
            properties: {
                links_count: 9,
                title: "Camp de Tarragona railway station"
            }
        },
        ...
    }