forked from HannesStark/EquiBind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
484 lines (425 loc) · 29.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
import sys
from copy import deepcopy
import os
from dgl import load_graphs
from rdkit import Chem
from rdkit.Chem import RemoveHs
from rdkit.Geometry import Point3D
from tqdm import tqdm
from commons.geometry_utils import rigid_transform_Kabsch_3D, get_torsions, get_dihedral_vonMises, apply_changes
from commons.logger import Logger
from commons.process_mols import read_molecule, get_lig_graph_revised, \
get_rec_graph, get_geometry_graph, get_geometry_graph_ring, \
get_receptor_inference
from train import load_model
from datasets.pdbbind import PDBBind
from commons.utils import seed_all, read_strings_from_txt
import yaml
from datasets.custom_collate import * # do not remove
from models import * # do not remove
from torch.nn import * # do not remove
from torch.optim import * # do not remove
from commons.losses import * # do not remove
from torch.optim.lr_scheduler import * # do not remove
from torch.utils.data import DataLoader
from trainer.metrics import Rsquared, MeanPredictorLoss, MAE, PearsonR, RMSD, RMSDfraction, CentroidDist, \
CentroidDistFraction, RMSDmedian, CentroidDistMedian
# turn on for debugging C code like Segmentation Faults
import faulthandler
faulthandler.enable()
def parse_arguments(arglist = None):
p = argparse.ArgumentParser()
p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs_clean/inference.yml')
p.add_argument('--checkpoint', type=str, help='path to .pt file in a checkpoint directory')
p.add_argument('--output_directory', type=str, default=None, help='path where to put the predicted results')
p.add_argument('--run_corrections', type=bool, default=False,
help='whether or not to run the fast point cloud ligand fitting')
p.add_argument('--run_dirs', type=list, default=[], help='path directory with saved runs')
p.add_argument('--fine_tune_dirs', type=list, default=[], help='path directory with saved finetuning runs')
p.add_argument('--inference_path', type=str, help='path to some pdb files for which you want to run inference')
p.add_argument('--experiment_name', type=str, help='name that will be added to the runs folder output')
p.add_argument('--logdir', type=str, default='runs', help='tensorboard logdirectory')
p.add_argument('--num_epochs', type=int, default=2500, help='number of times to iterate through all samples')
p.add_argument('--batch_size', type=int, default=1024, help='samples that will be processed in parallel')
p.add_argument('--patience', type=int, default=20, help='stop training after no improvement in this many epochs')
p.add_argument('--minimum_epochs', type=int, default=0, help='minimum numer of epochs to run')
p.add_argument('--dataset_params', type=dict, default={},
help='parameters with keywords of the dataset')
p.add_argument('--num_train', type=int, default=-1, help='n samples of the model samples to use for train')
p.add_argument('--num_val', type=int, default=None, help='n samples of the model samples to use for validation')
p.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
p.add_argument('--multithreaded_seeds', type=list, default=[],
help='if this is non empty, multiple threads will be started, training the same model but with the different seeds')
p.add_argument('--seed_data', type=int, default=1, help='if you want to use a different seed for the datasplit')
p.add_argument('--loss_func', type=str, default='MSELoss', help='Class name of torch.nn like [MSELoss, L1Loss]')
p.add_argument('--loss_params', type=dict, default={}, help='parameters with keywords of the chosen loss function')
p.add_argument('--optimizer', type=str, default='Adam', help='Class name of torch.optim like [Adam, SGD, AdamW]')
p.add_argument('--optimizer_params', type=dict, help='parameters with keywords of the chosen optimizer like lr')
p.add_argument('--clip_grad', type=float, default=None, help='clip gradients if magnitude is greater')
p.add_argument('--lr_scheduler', type=str,
help='Class name of torch.optim.lr_scheduler like [CosineAnnealingLR, ExponentialLR, LambdaLR]')
p.add_argument('--lr_scheduler_params', type=dict, help='parameters with keywords of the chosen lr_scheduler')
p.add_argument('--scheduler_step_per_batch', default=True, type=bool,
help='step every batch if true step every epoch otherwise')
p.add_argument('--log_iterations', type=int, default=-1,
help='log every log_iterations iterations (-1 for only logging after each epoch)')
p.add_argument('--expensive_log_iterations', type=int, default=100,
help='frequency with which to do expensive logging operations')
p.add_argument('--eval_per_epochs', type=int, default=0,
help='frequency with which to do run the function run_eval_per_epoch that can do some expensive calculations on the val set or sth like that. If this is zero, then the function will never be called')
p.add_argument('--metrics', default=[], help='tensorboard metrics [mae, mae_denormalized, qm9_properties ...]')
p.add_argument('--main_metric', default='loss', help='for early stopping etc.')
p.add_argument('--main_metric_goal', type=str, default='min', help='controls early stopping. [max, min]')
p.add_argument('--val_per_batch', type=bool, default=True,
help='run evaluation every batch and then average over the eval results. When running the molhiv benchmark for example, this needs to be Fale because we need to evaluate on all val data at once since the metric is rocauc')
p.add_argument('--tensorboard_functions', default=[], help='choices of the TENSORBOARD_FUNCTIONS in utils')
p.add_argument('--num_epochs_local_only', type=int, default=1,
help='when training with OptimalTransportTrainer, this specifies for how many epochs only the local predictions will get a loss')
p.add_argument('--collate_function', default='graph_collate', help='the collate function to use for DataLoader')
p.add_argument('--collate_params', type=dict, default={},
help='parameters with keywords of the chosen collate function')
p.add_argument('--device', type=str, default='cuda', help='What device to train on: cuda or cpu')
p.add_argument('--models_to_save', type=list, default=[],
help='specify after which epochs to remember the best model')
p.add_argument('--model_type', type=str, default='MPNN', help='Classname of one of the models in the models dir')
p.add_argument('--model_parameters', type=dict, help='dictionary of model parameters')
p.add_argument('--trainer', type=str, default='binding', help='')
p.add_argument('--train_sampler', type=str, default=None, help='any of pytorchs samplers or a custom sampler')
p.add_argument('--eval_on_test', type=bool, default=True, help='runs evaluation on test set if true')
p.add_argument('--check_se3_invariance', type=bool, default=False, help='check it instead of generating files')
p.add_argument('--num_confs', type=int, default=1, help='num_confs if using rdkit conformers')
p.add_argument('--use_rdkit_coords', action="store_true",
help='override the rkdit usage behavior of the used model')
p.add_argument('--no_use_rdkit_coords', action="store_false", dest = "use_rdkit_coords",
help='override the rkdit usage behavior of the used model')
cmdline_parser = deepcopy(p)
args = p.parse_args(arglist)
clear_defaults = {key: argparse.SUPPRESS for key in args.__dict__}
cmdline_parser.set_defaults(**clear_defaults)
cmdline_parser._defaults = {}
cmdline_args = cmdline_parser.parse_args(arglist)
return args, cmdline_args
def inference(args, tune_args=None):
sys.stdout = Logger(logpath=os.path.join(os.path.dirname(args.checkpoint), f'inference.log'), syspart=sys.stdout)
sys.stderr = Logger(logpath=os.path.join(os.path.dirname(args.checkpoint), f'inference.log'), syspart=sys.stderr)
seed_all(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'cuda' else "cpu")
use_rdkit_coords = args.dataset_params[
'use_rdkit_coords'] if 'use_rdkit_coords' in args.dataset_params.keys() else False
args.dataset_params['multiple_rdkit_conformers'] = args.num_confs > 1
args.dataset_params['num_confs'] = args.num_confs
data = PDBBind(device=device, complex_names_path=args.test_names, **args.dataset_params)
print('test size: ', len(data))
model = load_model(args, data_sample=data[0], device=device, save_trajectories=args.save_trajectories)
print('trainable params in model: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
batch_size = args.batch_size if args.dataset_params['use_rec_atoms'] == False else 2
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
loader = DataLoader(data, batch_size=batch_size, collate_fn=collate_function)
checkpoint = torch.load(args.checkpoint, map_location=device)
model.load_state_dict({k: v for k, v in checkpoint['model_state_dict'].items() if 'cross_coords' not in k})
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
for conformer_id in range(args.num_confs):
all_ligs_coords_pred = []
all_ligs_coords = []
all_ligs_keypts = []
all_recs_keypts = []
all_pocket_coords = []
all_names = []
data.conformer_id = conformer_id
for i, batch in tqdm(enumerate(loader)):
with torch.no_grad():
lig_graphs, rec_graphs, ligs_coords, recs_coords, all_rec_coords, pockets_coords_lig, geometry_graph, names, idx = tuple(
batch)
# if names[0] not in ['2fxs', '2iwx', '2vw5', '2wer', '2yge', ]: continue
ligs_coords_pred, ligs_keypts, recs_keypts, rotations, translations, geom_reg_loss = model(lig_graphs,
rec_graphs,
complex_names=names,
epoch=0,
geometry_graph=geometry_graph.to(
device) if geometry_graph != None else None)
for lig_coords_pred, lig_coords, lig_keypts, rec_keypts, rotation, translation, rec_pocket_coords in zip(
ligs_coords_pred, ligs_coords, ligs_keypts, recs_keypts, rotations, translations,
pockets_coords_lig):
all_ligs_coords_pred.append(lig_coords_pred.detach().cpu())
all_ligs_coords.append(lig_coords.detach().cpu())
all_ligs_keypts.append(((rotation @ (lig_keypts).T).T + translation).detach().cpu())
all_recs_keypts.append(rec_keypts.detach().cpu())
all_pocket_coords.append(rec_pocket_coords.detach().cpu())
if translations == []:
for lig_coords_pred, lig_coords in zip(ligs_coords_pred, ligs_coords):
all_ligs_coords_pred.append(lig_coords_pred.detach().cpu())
all_ligs_coords.append(lig_coords.detach().cpu())
all_names.extend(names)
path = os.path.join(os.path.dirname(args.checkpoint),
f'predictions_Tune{tune_args != None}_RDKit{use_rdkit_coords}_confID{conformer_id}.pt')
print(f'Saving predictions to {path}')
results = {'predictions': all_ligs_coords_pred, 'targets': all_ligs_coords, 'lig_keypts': all_ligs_keypts,
'rec_keypts': all_recs_keypts, 'pocket_coords': all_pocket_coords, 'names': all_names}
torch.save(results, path)
rmsds = []
centroid_distsH = []
for i, (prediction, target, lig_keypts, rec_keypts, pocket_coords, name) in tqdm(enumerate(
zip(results['predictions'], results['targets'], results['lig_keypts'], results['rec_keypts'],
results['pocket_coords'], results['names']))):
coords_pred = prediction.numpy()
coords_native = target.numpy()
rmsd = np.sqrt(np.sum((coords_pred - coords_native) ** 2, axis=1).mean())
centroid_distance = np.linalg.norm(coords_native.mean(axis=0) - coords_pred.mean(axis=0))
centroid_distsH.append(centroid_distance)
rmsds.append(rmsd)
rmsds = np.array(rmsds)
centroid_distsH = np.array(centroid_distsH)
print('EquiBind-U with hydrogens inclduded in the loss')
print('mean rmsd: ', rmsds.mean().__round__(2), ' pm ', rmsds.std().__round__(2))
print('rmsd precentiles: ', np.percentile(rmsds, [25, 50, 75]).round(2))
print(f'rmsds below 2: {(100 * (rmsds < 2).sum() / len(rmsds)).__round__(2)}%')
print(f'rmsds below 5: {(100 * (rmsds < 5).sum() / len(rmsds)).__round__(2)}%')
print('mean centroid: ', centroid_distsH.mean().__round__(2), ' pm ',
centroid_distsH.std().__round__(2))
print('centroid precentiles: ', np.percentile(centroid_distsH, [25, 50, 75]).round(2))
print(f'centroid_distances below 2: {(100 * (centroid_distsH < 2).sum() / len(centroid_distsH)).__round__(2)}%')
print(f'centroid_distances below 5: {(100 * (centroid_distsH < 5).sum() / len(centroid_distsH)).__round__(2)}%')
if args.run_corrections:
rdkit_graphs, _ = load_graphs(
f'{data.processed_dir}/lig_graphs_rdkit_coords.pt')
kabsch_rmsds = []
rmsds = []
centroid_distances = []
kabsch_rmsds_optimized = []
rmsds_optimized = []
centroid_distances_optimized = []
for i, (prediction, target, lig_keypts, rec_keypts, name) in tqdm(enumerate(
zip(results['predictions'], results['targets'], results['lig_keypts'], results['rec_keypts'],
results['names']))):
lig = read_molecule(os.path.join('data/PDBBind/', name, f'{name}_ligand.sdf'), sanitize=True)
if lig == None: # read mol2 file if sdf file cannot be sanitized
lig = read_molecule(os.path.join('data/PDBBind/', name, f'{name}_ligand.mol2'), sanitize=True)
lig_rdkit = deepcopy(lig)
rdkit_coords = rdkit_graphs[i].ndata['new_x'].numpy()
conf = lig_rdkit.GetConformer()
for i in range(lig_rdkit.GetNumAtoms()):
x, y, z = rdkit_coords[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
lig_rdkit = RemoveHs(lig_rdkit)
lig = RemoveHs(lig)
lig_equibind = deepcopy(lig)
conf = lig_equibind.GetConformer()
for i in range(lig_equibind.GetNumAtoms()):
x, y, z = prediction.numpy()[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
coords_pred = lig_equibind.GetConformer().GetPositions()
coords_native = lig.GetConformer().GetPositions()
rmsdval = np.sqrt(np.sum((coords_pred - coords_native) ** 2, axis=1).mean())
centroid_distance = np.linalg.norm(coords_native.mean(axis=0) - coords_pred.mean(axis=0))
R, t = rigid_transform_Kabsch_3D(coords_pred.T, coords_native.T)
moved_coords = (R @ (coords_pred).T).T + t.squeeze()
kabsch_rmsd = np.sqrt(np.sum((moved_coords - coords_native) ** 2, axis=1).mean())
Z_pt_cloud = coords_pred
rotable_bonds = get_torsions([lig_rdkit])
new_dihedrals = np.zeros(len(rotable_bonds))
for idx, r in enumerate(rotable_bonds):
new_dihedrals[idx] = get_dihedral_vonMises(lig_rdkit, lig_rdkit.GetConformer(), r, Z_pt_cloud)
optimized_mol = apply_changes(lig_rdkit, new_dihedrals, rotable_bonds)
coords_pred_optimized = optimized_mol.GetConformer().GetPositions()
R, t = rigid_transform_Kabsch_3D(coords_pred_optimized.T, coords_pred.T)
coords_pred_optimized = (R @ (coords_pred_optimized).T).T + t.squeeze()
rmsdval_optimized = np.sqrt(np.sum((coords_pred_optimized - coords_native) ** 2, axis=1).mean())
centroid_distance_optimized = np.linalg.norm(
coords_native.mean(axis=0) - coords_pred_optimized.mean(axis=0))
R, t = rigid_transform_Kabsch_3D(coords_pred_optimized.T, coords_native.T)
moved_coords_optimized = (R @ (coords_pred_optimized).T).T + t.squeeze()
kabsch_rmsd_optimized = np.sqrt(np.sum((moved_coords_optimized - coords_native) ** 2, axis=1).mean())
kabsch_rmsds.append(kabsch_rmsd)
rmsds.append(rmsdval)
centroid_distances.append(centroid_distance)
kabsch_rmsds_optimized.append(kabsch_rmsd_optimized)
rmsds_optimized.append(rmsdval_optimized)
centroid_distances_optimized.append(centroid_distance_optimized)
kabsch_rmsds = np.array(kabsch_rmsds)
rmsdvals = np.array(rmsds)
centroid_distsU = np.array(centroid_distances)
kabsch_rmsds_optimized = np.array(kabsch_rmsds_optimized)
rmsd_optimized = np.array(rmsds_optimized)
centroid_dists = np.array(centroid_distances_optimized)
print('EquiBind-U')
print('mean rmsdval: ', rmsdvals.mean().__round__(2), ' pm ', rmsdvals.std().__round__(2))
print('rmsd precentiles: ', np.percentile(rmsdvals, [25, 50, 75]).round(2))
print(f'rmsdvals below 2: {(100 * (rmsdvals < 2).sum() / len(rmsdvals)).__round__(2)}%')
print(f'rmsdvals below 5: {(100 * (rmsdvals < 5).sum() / len(rmsdvals)).__round__(2)}%')
print('mean centroid: ', centroid_distsU.mean().__round__(2), ' pm ', centroid_distsU.std().__round__(2))
print('centroid precentiles: ', np.percentile(centroid_distsU, [25, 50, 75]).round(2))
print(f'centroid dist below 2: {(100 * (centroid_distsU < 2).sum() / len(centroid_distsU)).__round__(2)}%')
print(f'centroid dist below 5: {(100 * (centroid_distsU < 5).sum() / len(centroid_distsU)).__round__(2)}%')
print(f'mean kabsch RMSD: ', kabsch_rmsds.mean().__round__(2), ' pm ', kabsch_rmsds.std().__round__(2))
print('kabsch RMSD percentiles: ', np.percentile(kabsch_rmsds, [25, 50, 75]).round(2))
print('EquiBind')
print('mean rmsdval: ', rmsd_optimized.mean().__round__(2), ' pm ', rmsd_optimized.std().__round__(2))
print('rmsd precentiles: ', np.percentile(rmsd_optimized, [25, 50, 75]).round(2))
print(f'rmsdvals below 2: {(100 * (rmsd_optimized < 2).sum() / len(rmsd_optimized)).__round__(2)}%')
print(f'rmsdvals below 5: {(100 * (rmsd_optimized < 5).sum() / len(rmsd_optimized)).__round__(2)}%')
print('mean centroid: ', centroid_dists.mean().__round__(2), ' pm ', centroid_dists.std().__round__(2))
print('centroid precentiles: ', np.percentile(centroid_dists, [25, 50, 75]).round(2))
print(f'centroid dist below 2: {(100 * (centroid_dists < 2).sum() / len(centroid_dists)).__round__(2)}%')
print(f'centroid dist below 5: {(100 * (centroid_dists < 5).sum() / len(centroid_dists)).__round__(2)}%')
print(f'mean kabsch RMSD: ', kabsch_rmsds_optimized.mean().__round__(2), ' pm ',
kabsch_rmsds_optimized.std().__round__(2))
print('kabsch RMSD percentiles: ', np.percentile(kabsch_rmsds_optimized, [25, 50, 75]).round(2))
def inference_from_files(args):
seed_all(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'cuda' else "cpu")
checkpoint = torch.load(args.checkpoint, map_location=device)
model = None
all_ligs_coords_corrected = []
all_intersection_losses = []
all_intersection_losses_untuned = []
all_ligs_coords_pred_untuned = []
all_ligs_coords = []
all_ligs_keypts = []
all_recs_keypts = []
all_names = []
dp = args.dataset_params
use_rdkit_coords = args.use_rdkit_coords if args.use_rdkit_coords != None else args.dataset_params[
'use_rdkit_coords']
names = os.listdir(args.inference_path) if args.inference_path != None else tqdm(read_strings_from_txt('data/timesplit_test'))
for idx, name in enumerate(names):
print(f'\nProcessing {name}: complex {idx + 1} of {len(names)}')
file_names = os.listdir(os.path.join(args.inference_path, name))
rec_name = [i for i in file_names if 'rec.pdb' in i or 'protein' in i][0]
lig_names = [i for i in file_names if 'ligand' in i]
rec_path = os.path.join(args.inference_path, name, rec_name)
for lig_name in lig_names:
if not os.path.exists(os.path.join(args.inference_path, name, lig_name)):
raise ValueError(f'Path does not exist: {os.path.join(args.inference_path, name, lig_name)}')
print(f'Trying to load {os.path.join(args.inference_path, name, lig_name)}')
lig = read_molecule(os.path.join(args.inference_path, name, lig_name), sanitize=True)
if lig != None: # read mol2 file if sdf file cannot be sanitized
used_lig = os.path.join(args.inference_path, name, lig_name)
break
if lig_names == []: raise ValueError(f'No ligand files found. The ligand file has to contain \'ligand\'.')
if lig == None: raise ValueError(f'None of the ligand files could be read: {lig_names}')
print(f'Docking the receptor {os.path.join(args.inference_path, name, rec_name)}\nTo the ligand {used_lig}')
rec, rec_coords, c_alpha_coords, n_coords, c_coords = get_receptor_inference(rec_path)
rec_graph = get_rec_graph(rec, rec_coords, c_alpha_coords, n_coords, c_coords,
use_rec_atoms=dp['use_rec_atoms'], rec_radius=dp['rec_graph_radius'],
surface_max_neighbors=dp['surface_max_neighbors'],
surface_graph_cutoff=dp['surface_graph_cutoff'],
surface_mesh_cutoff=dp['surface_mesh_cutoff'],
c_alpha_max_neighbors=dp['c_alpha_max_neighbors'])
lig_graph = get_lig_graph_revised(lig, name, max_neighbors=dp['lig_max_neighbors'],
use_rdkit_coords=use_rdkit_coords, radius=dp['lig_graph_radius'])
if 'geometry_regularization' in dp and dp['geometry_regularization']:
geometry_graph = get_geometry_graph(lig)
elif 'geometry_regularization_ring' in dp and dp['geometry_regularization_ring']:
geometry_graph = get_geometry_graph_ring(lig)
else:
geometry_graph = None
start_lig_coords = lig_graph.ndata['x']
# Randomly rotate and translate the ligand.
rot_T, rot_b = random_rotation_translation(translation_distance=5)
if (use_rdkit_coords):
lig_coords_to_move = lig_graph.ndata['new_x']
else:
lig_coords_to_move = lig_graph.ndata['x']
mean_to_remove = lig_coords_to_move.mean(dim=0, keepdims=True)
input_coords = (rot_T @ (lig_coords_to_move - mean_to_remove).T).T + rot_b
lig_graph.ndata['new_x'] = input_coords
if model == None:
model = load_model(args, data_sample=(lig_graph, rec_graph), device=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
with torch.no_grad():
geometry_graph = geometry_graph.to(device) if geometry_graph != None else None
ligs_coords_pred_untuned, ligs_keypts, recs_keypts, rotations, translations, geom_reg_loss = model(
lig_graph.to(device), rec_graph.to(device), geometry_graph, complex_names=[name], epoch=0)
for lig_coords_pred_untuned, lig_coords, lig_keypts, rec_keypts, rotation, translation in zip(
ligs_coords_pred_untuned, [start_lig_coords], ligs_keypts, recs_keypts, rotations,
translations, ):
all_intersection_losses_untuned.append(
compute_revised_intersection_loss(lig_coords_pred_untuned.detach().cpu(), rec_graph.ndata['x'],
alpha=0.2, beta=8, aggression=0))
all_ligs_coords_pred_untuned.append(lig_coords_pred_untuned.detach().cpu())
all_ligs_coords.append(lig_coords.detach().cpu())
all_ligs_keypts.append(((rotation @ (lig_keypts).T).T + translation).detach().cpu())
all_recs_keypts.append(rec_keypts.detach().cpu())
if args.run_corrections:
prediction = ligs_coords_pred_untuned[0].detach().cpu()
lig_input = deepcopy(lig)
conf = lig_input.GetConformer()
for i in range(lig_input.GetNumAtoms()):
x, y, z = input_coords.numpy()[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
lig_equibind = deepcopy(lig)
conf = lig_equibind.GetConformer()
for i in range(lig_equibind.GetNumAtoms()):
x, y, z = prediction.numpy()[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
coords_pred = lig_equibind.GetConformer().GetPositions()
Z_pt_cloud = coords_pred
rotable_bonds = get_torsions([lig_input])
new_dihedrals = np.zeros(len(rotable_bonds))
for idx, r in enumerate(rotable_bonds):
new_dihedrals[idx] = get_dihedral_vonMises(lig_input, lig_input.GetConformer(), r, Z_pt_cloud)
optimized_mol = apply_changes(lig_input, new_dihedrals, rotable_bonds)
coords_pred_optimized = optimized_mol.GetConformer().GetPositions()
R, t = rigid_transform_Kabsch_3D(coords_pred_optimized.T, coords_pred.T)
coords_pred_optimized = (R @ (coords_pred_optimized).T).T + t.squeeze()
all_ligs_coords_corrected.append(coords_pred_optimized)
if args.output_directory:
if not os.path.exists(f'{args.output_directory}/{name}'):
os.makedirs(f'{args.output_directory}/{name}')
conf = optimized_mol.GetConformer()
for i in range(optimized_mol.GetNumAtoms()):
x, y, z = coords_pred_optimized[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
block_optimized = Chem.MolToMolBlock(optimized_mol)
print(f'Writing prediction to {args.output_directory}/{name}/lig_equibind_corrected.sdf')
with open(f'{args.output_directory}/{name}/lig_equibind_corrected.sdf', "w") as newfile:
newfile.write(block_optimized)
all_names.append(name)
path = os.path.join(os.path.dirname(args.checkpoint), f'predictions_RDKit{use_rdkit_coords}.pt')
print(f'Saving predictions to {path}')
results = {'corrected_predictions': all_ligs_coords_corrected, 'initial_predictions': all_ligs_coords_pred_untuned,
'targets': all_ligs_coords, 'lig_keypts': all_ligs_keypts, 'rec_keypts': all_recs_keypts,
'names': all_names, 'intersection_losses_untuned': all_intersection_losses_untuned,
'intersection_losses': all_intersection_losses}
torch.save(results, path)
if __name__ == '__main__':
args, cmdline_args = parse_arguments()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
if key in cmdline_args:
continue
arg_dict[key] = value
args.config = args.config.name
else:
config_dict = {}
for run_dir in args.run_dirs:
args.checkpoint = f'runs/{run_dir}/best_checkpoint.pt'
config_dict['checkpoint'] = f'runs/{run_dir}/best_checkpoint.pt'
# overwrite args with args from checkpoint except for the args that were contained in the config file
arg_dict = args.__dict__
with open(os.path.join(os.path.dirname(args.checkpoint), 'train_arguments.yaml'), 'r') as arg_file:
checkpoint_dict = yaml.load(arg_file, Loader=yaml.FullLoader)
for key, value in checkpoint_dict.items():
if (key not in config_dict.keys()) and (key not in cmdline_args):
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.model_parameters['noise_initial'] = 0
if args.inference_path == None:
inference(args)
else:
inference_from_files(args)