forked from HannesStark/EquiBind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
307 lines (262 loc) · 16.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import concurrent.futures
import os
import sys
import traceback
from collections import defaultdict
from datetime import datetime
from commons.logger import Logger
from datasets.samplers import HardSampler
from trainer.binding_trainer import BindingTrainer
from datasets.pdbbind import PDBBind
from commons.utils import seed_all, get_random_indices, log
import yaml
from datasets.custom_collate import * # do not remove
from models import * # do not remove
from torch.nn import * # do not remove
from torch.optim import * # do not remove
from commons.losses import * # do not remove
from torch.optim.lr_scheduler import * # do not remove
from torch.utils.data import DataLoader, Subset
from trainer.metrics import Rsquared, MeanPredictorLoss, MAE, PearsonR, RMSD, RMSDfraction, CentroidDist, \
CentroidDistFraction, RMSDmedian, CentroidDistMedian, KabschRMSD
from trainer.trainer import Trainer
# turn on for debugging for C code like Segmentation Faults
import faulthandler
faulthandler.enable()
def parse_arguments():
p = argparse.ArgumentParser()
p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs_clean/RDKitCoords_flexible_self_docking.yml')
p.add_argument('--experiment_name', type=str, help='name that will be added to the runs folder output')
p.add_argument('--logdir', type=str, default='runs', help='tensorboard logdirectory')
p.add_argument('--num_epochs', type=int, default=2500, help='number of times to iterate through all samples')
p.add_argument('--batch_size', type=int, default=1024, help='samples that will be processed in parallel')
p.add_argument('--patience', type=int, default=20, help='stop training after no improvement in this many epochs')
p.add_argument('--minimum_epochs', type=int, default=0, help='minimum number of epochs to run')
p.add_argument('--dataset_params', type=dict, default={}, help='parameters with keywords of the dataset')
p.add_argument('--dataset', type=str, default='pdbbind', help='which dataset to use')
p.add_argument('--num_train', type=int, default=-1, help='n samples of the model samples to use for train')
p.add_argument('--num_val', type=int, default=None, help='n samples of the model samples to use for validation')
p.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
p.add_argument('--multithreaded_seeds', type=list, default=[],
help='if this is non empty, multiple threads will be started, training the same model but with the different seeds')
p.add_argument('--seed_data', type=int, default=1, help='if you want to use a different seed for the datasplit')
p.add_argument('--loss_func', type=str, default='MSELoss', help='Class name of torch.nn like [MSELoss, L1Loss]')
p.add_argument('--loss_params', type=dict, default={}, help='parameters with keywords of the chosen loss function')
p.add_argument('--optimizer', type=str, default='Adam', help='Class name of torch.optim like [Adam, SGD, AdamW]')
p.add_argument('--optimizer_params', type=dict, help='parameters with keywords of the chosen optimizer like lr')
p.add_argument('--clip_grad', type=float, default=None, help='clip gradients if magnitude is greater')
p.add_argument('--lr_scheduler', type=str,
help='Class name of torch.optim.lr_scheduler like [CosineAnnealingLR, ExponentialLR, LambdaLR]')
p.add_argument('--lr_scheduler_params', type=dict, help='parameters with keywords of the chosen lr_scheduler')
p.add_argument('--scheduler_step_per_batch', default=True, type=bool,
help='step every batch if true step every epoch otherwise')
p.add_argument('--log_iterations', type=int, default=-1,
help='log every log_iterations iterations (-1 for only logging after each epoch)')
p.add_argument('--expensive_log_iterations', type=int, default=100,
help='frequency with which to do expensive logging operations')
p.add_argument('--eval_per_epochs', type=int, default=0,
help='frequency with which to do run the function run_eval_per_epoch that can do some expensive calculations on the val set or sth like that. If this is zero, then the function will never be called')
p.add_argument('--metrics', default=[], help='tensorboard metrics [mae, mae_denormalized, qm9_properties ...]')
p.add_argument('--main_metric', default='loss', help='for early stopping etc.')
p.add_argument('--main_metric_goal', type=str, default='min', help='controls early stopping. [max, min]')
p.add_argument('--val_per_batch', type=bool, default=True,
help='run evaluation every batch and then average over the eval results. When running the molhiv benchmark for example, this needs to be Fale because we need to evaluate on all val data at once since the metric is rocauc')
p.add_argument('--tensorboard_functions', default=[], help='choices of the TENSORBOARD_FUNCTIONS in utils')
p.add_argument('--checkpoint', type=str, help='path to directory that contains a checkpoint to continue training')
p.add_argument('--collate_function', default='graph_collate', help='the collate function to use for DataLoader')
p.add_argument('--collate_params', type=dict, default={},
help='parameters with keywords of the chosen collate function')
p.add_argument('--device', type=str, default='cuda', help='What device to train on: cuda or cpu')
p.add_argument('--models_to_save', type=list, default=[],
help='specify after which epochs to remember the best model')
p.add_argument('--model_type', type=str, default='MPNN', help='Classname of one of the models in the models dir')
p.add_argument('--model_parameters', type=dict, help='dictionary of model parameters')
p.add_argument('--trainer', type=str, default='binding', help='')
p.add_argument('--train_sampler', type=str, default=None, help='any of pytorchs samplers or a custom sampler')
p.add_argument('--train_predictions_name', type=str, default=None, help='')
p.add_argument('--val_predictions_name', type=str, default=None, help='')
p.add_argument('--sampler_parameters', type=dict, help='dictionary of sampler parameters')
p.add_argument('--eval_on_test', type=bool, default=True, help='runs evaluation on test set if true')
p.add_argument('--pin_memory', type=bool, default=True, help='pin memory argument for pytorch dataloaders')
p.add_argument('--num_workers', type=bool, default=0, help='num workers argument of dataloaders')
return p.parse_args()
def get_trainer(args, model, data, device, metrics, run_dir, sampler=None):
if args.trainer == None:
trainer = Trainer
elif args.trainer == 'binding':
trainer = BindingTrainer
return trainer(model=model, args=args, metrics=metrics, main_metric=args.main_metric,
main_metric_goal=args.main_metric_goal, optim=globals()[args.optimizer],
loss_func=globals()[args.loss_func](**args.loss_params), device=device, scheduler_step_per_batch=args.scheduler_step_per_batch,
run_dir=run_dir, sampler=sampler)
def load_model(args, data_sample, device, **kwargs):
model = globals()[args.model_type](device=device,
lig_input_edge_feats_dim=data_sample[0].edata['feat'].shape[1],
rec_input_edge_feats_dim=data_sample[1].edata['feat'].shape[1],
**args.model_parameters, **kwargs)
return model
def train_wrapper(args):
mp = args.model_parameters
lp = args.loss_params
if args.checkpoint:
run_dir = os.path.dirname(args.checkpoint)
else:
if args.trainer == 'torsion':
run_dir= f'{args.logdir}/{os.path.splitext(os.path.basename(args.config))[0]}_{args.experiment_name}_layers{mp["n_lays"]}_bs{args.batch_size}_dim{mp["iegmn_lay_hid_dim"]}_nAttH{mp["num_att_heads"]}_norm{mp["layer_norm"]}_normc{mp["layer_norm_coords"]}_normf{mp["final_h_layer_norm"]}_recAtoms{mp["use_rec_atoms"]}_numtrain{args.num_train}_{start_time}'
else:
run_dir = f'{args.logdir}/{os.path.splitext(os.path.basename(args.config))[0]}_{args.experiment_name}_layers{mp["n_lays"]}_bs{args.batch_size}_otL{lp["ot_loss_weight"]}_iL{lp["intersection_loss_weight"]}_dim{mp["iegmn_lay_hid_dim"]}_nAttH{mp["num_att_heads"]}_norm{mp["layer_norm"]}_normc{mp["layer_norm_coords"]}_normf{mp["final_h_layer_norm"]}_recAtoms{mp["use_rec_atoms"]}_numtrain{args.num_train}_{start_time}'
if not os.path.exists(run_dir):
os.mkdir(run_dir)
sys.stdout = Logger(logpath=os.path.join(run_dir, f'log.log'), syspart=sys.stdout)
sys.stderr = Logger(logpath=os.path.join(run_dir, f'log.log'), syspart=sys.stderr)
return train(args, run_dir)
def train(args, run_dir):
seed_all(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'cuda' else "cpu")
metrics_dict = {'rsquared': Rsquared(),
'mean_rmsd': RMSD(),
'mean_centroid_distance': CentroidDist(),
'rmsd_less_than_2': RMSDfraction(2),
'rmsd_less_than_5': RMSDfraction(5),
'rmsd_less_than_10': RMSDfraction(10),
'rmsd_less_than_20': RMSDfraction(20),
'rmsd_less_than_50': RMSDfraction(50),
'median_rmsd': RMSDmedian(),
'median_centroid_distance': CentroidDistMedian(),
'centroid_distance_less_than_2': CentroidDistFraction(2),
'centroid_distance_less_than_5': CentroidDistFraction(5),
'centroid_distance_less_than_10': CentroidDistFraction(10),
'centroid_distance_less_than_20': CentroidDistFraction(20),
'centroid_distance_less_than_50': CentroidDistFraction(50),
'kabsch_rmsd': KabschRMSD(),
'mae': MAE(),
'pearsonr': PearsonR(),
'mean_predictor_loss': MeanPredictorLoss(globals()[args.loss_func](**args.loss_params)),
}
train_data = PDBBind(device=device, complex_names_path=args.train_names,lig_predictions_name=args.train_predictions_name, is_train_data=True, **args.dataset_params)
val_data = PDBBind(device=device, complex_names_path=args.val_names,lig_predictions_name=args.val_predictions_name, **args.dataset_params)
if args.num_train != None:
train_data = Subset(train_data, get_random_indices(len(train_data))[:args.num_train])
if args.num_val != None:
val_data = Subset(val_data, get_random_indices(len(val_data))[:args.num_val])
log('train size: ', len(train_data))
log('val size: ', len(val_data))
model = load_model(args, data_sample=train_data[0], device=device)
log('trainable params in model: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
if args.train_sampler != None:
sampler = globals()[args.train_sampler](data_source=train_data, batch_size=args.batch_size)
train_loader = DataLoader(train_data, batch_sampler=sampler, collate_fn=collate_function,
pin_memory=args.pin_memory, num_workers=args.num_workers)
else:
sampler = None
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, collate_fn=collate_function,
pin_memory=args.pin_memory, num_workers=args.num_workers)
val_loader = DataLoader(val_data, batch_size=args.batch_size, collate_fn=collate_function,
pin_memory=args.pin_memory, num_workers=args.num_workers)
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
trainer = get_trainer(args=args, model=model, data=train_data, device=device, metrics=metrics, run_dir=run_dir,
sampler=sampler)
val_metrics, _, _ = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_data = PDBBind(device=device, complex_names_path=args.test_names, **args.dataset_params)
test_loader = DataLoader(test_data, batch_size=args.batch_size, collate_fn=collate_function,
pin_memory=args.pin_memory, num_workers=args.num_workers)
log('test size: ', len(test_data))
test_metrics, _, _ = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def get_arguments():
args = parse_arguments()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.config = args.config.name
else:
config_dict = {}
if args.checkpoint: # overwrite args with args from checkpoint except for the args that were contained in the config file
arg_dict = args.__dict__
with open(os.path.join(os.path.dirname(args.checkpoint), 'train_arguments.yaml'), 'r') as arg_file:
checkpoint_dict = yaml.load(arg_file, Loader=yaml.FullLoader)
for key, value in checkpoint_dict.items():
if key not in config_dict.keys():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
return args
def main_function():
args = get_arguments()
if args.multithreaded_seeds != []:
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for seed in args.multithreaded_seeds:
args_copy = get_arguments()
args_copy.seed = seed
futures.append(executor.submit(train_wrapper, args_copy))
results = [f.result() for f in
futures] # list of tuples of dictionaries with the validation results first and the test results second
all_val_metrics = defaultdict(list)
all_test_metrics = defaultdict(list)
log_dirs = []
for result in results:
val_metrics, test_metrics, log_dir = result
log_dirs.append(log_dir)
for key in val_metrics.keys():
all_val_metrics[key].append(val_metrics[key])
all_test_metrics[key].append(test_metrics[key])
files = [open(os.path.join(dir, 'multiple_seed_validation_statistics.txt'), 'w') for dir in log_dirs]
print('Validation results:')
for key, value in all_val_metrics.items():
metric = np.array(value)
for file in files:
file.write(f'\n{key:}\n')
file.write(f'mean: {metric.mean()}\n')
file.write(f'stddev: {metric.std()}\n')
file.write(f'stderr: {metric.std() / np.sqrt(len(metric))}\n')
file.write(f'values: {value}\n')
print(f'\n{key}:')
print(f'mean: {metric.mean()}')
print(f'stddev: {metric.std()}')
print(f'stderr: {metric.std() / np.sqrt(len(metric))}')
print(f'values: {value}')
for file in files:
file.close()
files = [open(os.path.join(dir, 'multiple_seed_test_statistics.txt'), 'w') for dir in log_dirs]
print('Test results:')
for key, value in all_test_metrics.items():
metric = np.array(value)
for file in files:
file.write(f'\n{key:}\n')
file.write(f'mean: {metric.mean()}\n')
file.write(f'stddev: {metric.std()}\n')
file.write(f'stderr: {metric.std() / np.sqrt(len(metric))}\n')
file.write(f'values: {value}\n')
print(f'\n{key}:')
print(f'mean: {metric.mean()}')
print(f'stddev: {metric.std()}')
print(f'stderr: {metric.std() / np.sqrt(len(metric))}')
print(f'values: {value}')
for file in files:
file.close()
else:
train_wrapper(args)
if __name__ == '__main__':
start_time = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
if not os.path.exists('logs'):
os.mkdir('logs')
with open(os.path.join('logs', f'{start_time}.log'), "w") as file:
try:
main_function()
except Exception as e:
traceback.print_exc(file=file)
raise