-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcustom_types.py
53 lines (45 loc) · 1.28 KB
/
custom_types.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# import open3d
import enum
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as nnf
from constants import DEBUG
from typing import Tuple, List, Union, Callable, Type, Iterator, Dict, Set, Optional, Any, Sized, Iterable
from types import DynamicClassAttribute
from enum import Enum, unique
import torch.optim.optimizer
import torch.utils.data
if DEBUG:
seed = 99
torch.manual_seed(seed)
np.random.seed(seed)
N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]
V_Mesh = Tuple[ARRAY, ARRAY]
T_Mesh = Tuple[T, Optional[T]]
T_Mesh_T = Union[T_Mesh, T]
COLORS = Union[T, ARRAY, Tuple[int, int, int]]
D = torch.device
CPU = torch.device('cpu')
def get_device(device_id: int) -> D:
if not torch.cuda.is_available():
return CPU
device_id = min(torch.cuda.device_count() - 1, device_id)
return torch.device(f'cuda:{device_id}')
CUDA = get_device
Optimizer = torch.optim.Adam
Dataset = torch.utils.data.Dataset
DataLoader = torch.utils.data.DataLoader
Subset = torch.utils.data.Subset