-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAI_test.py
384 lines (300 loc) · 11.9 KB
/
AI_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import pandas as pd
import numpy as np
import pymysql.cursors
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm, metrics
def rms(x): # RMS 함수 정의
return np.sqrt(np.mean(x ** 2))
conn1 = pymysql.connect(
host="101.101.217.206",
port=3306,
user="trendup",
passwd="2020",
database="dbtrendup",
charset='utf8'
)
conn2 = pymysql.connect(
host="101.101.217.206",
port=3306,
user="trendup",
passwd="2020",
database="dbML",
charset='utf8'
)
curs1 = conn1.cursor()
curs2 = conn2.cursor()
query1 = "select * from keyword_live_male"
curs1.execute(query1)
keyword_male_array1 = curs1.fetchall()
keyword_male1 = []
for i in keyword_male_array1:
keyword_male1.append(i[1])
query2 = "select * from MLpredict_list_male"
curs1.execute(query2)
keyword_male_array2 = curs1.fetchall()
keyword_male2 = []
for i in keyword_male_array2:
keyword_male2.append(i[0])
keyword = []
for i in keyword_male1:
if i not in keyword_male2:
keyword.append(i)
### test 머신러닝하고 싶은 키워드를 입력 ###
keyword_test=[]
###########################################
#주의! : 키워드 rawdata 테이블만 현재 db에 있어야함 / 개발용
###########################################
for keyword in keyword_test:
sql1 = "select * from " + keyword + "_RawData;"
query1 = str(sql1)
curs1.execute(query1)
raw_data = curs1.fetchall()
NoOfSensor = 1
NoOfFeature = 5
raw_data = np.array(raw_data)
NoOfData = int(raw_data.shape[0])
Fold = 4
NoOfFold_Data = int(NoOfData / Fold)
N_Feature = np.zeros((Fold, NoOfSensor * NoOfFeature))
raw_data = pd.DataFrame(raw_data)
for i in range(Fold):
temp_raw_data = raw_data.iloc[NoOfFold_Data * i: NoOfFold_Data * (i + 1), 1]
temp_raw_data = np.array(temp_raw_data, dtype=np.float)
N_Feature[i, 0] = np.max(temp_raw_data)
N_Feature[i, 1] = np.min(temp_raw_data)
N_Feature[i, 2] = np.mean(temp_raw_data)
N_Feature[i, 3] = rms(temp_raw_data)
N_Feature[i, 4] = np.var(temp_raw_data)
N_Feature = np.array(N_Feature, dtype=object)
N_Feature_Data = pd.DataFrame(N_Feature)
sql2 = "create table " + keyword + "_DataFeature(max int(200),min int(200),mean int(200),rms int(200),var int(200))"
query2 = str(sql2)
curs1.execute(query2)
#### 특징 저장
data_feature_array = np.array(N_Feature_Data)
for i in data_feature_array:
values1 = (i[0], i[1], i[2], i[3], i[4])
sql1 = "insert into " + keyword + "_DataFeature (max,min,mean,rms,var) values(%s,%s,%s,%s,%s)"
query1 = str(sql1)
curs1.execute(query1, values1)
All_Label = np.zeros(NoOfData)
N_array = np.array(raw_data.iloc[:, 1], dtype=float)
#### Labeling
k = 208
for i in N_array:
if i > 80: ###### 라벨링 조건 - 3주후 키워드 검색수가 80회를 넘는 경우 - 1
All_Label[(k - 3) % 208] = 1
k = k + 1
All_Label[NoOfFold_Data-1] = 1
All_Label[NoOfFold_Data*2-1] = 1
All_Label[NoOfFold_Data*3-1] = 1
All_Label[NoOfFold_Data*4-1] = 1
All_Label = pd.Series(All_Label)
NoOfData = int(raw_data.shape[0])
Fold = 4
FeatNo = int(raw_data.shape[1] - 1) # 데이터 특징 수 (=데이터 차원)
FoldDataNo = int(NoOfData / Fold) # 1개 Fold 당 (검증)데이터 개수
date_array = np.zeros((FoldDataNo, 1))
start_date = 3
for i in range(FoldDataNo):
date_array[i] = start_date
start_date = start_date + 7
date_array = np.array(date_array)
############### sensor data
# Validation Data set
for i in range(Fold):
temp_raw_data = date_array
s = 'Validation_Fold%d = np.array(temp_raw_data)' % (i + 1)
exec(s)
# Training Data set
for i in range(Fold):
temp_Train = np.concatenate((date_array, date_array), axis=0)
temp_Train_Final = np.concatenate((temp_Train, date_array), axis=0)
s = 'Training_Fold%d = np.array(temp_Train_Final)' % (i + 1)
exec(s)
for i in range(Fold):
s1 = 'tempA=Training_Fold%d' % (i + 1)
exec(s1)
s2 = 'tempB=Validation_Fold%d' % (i + 1)
exec(s2)
sql1 = 'create table Training_Fold%d_%s(n float(10));' % (i + 1, keyword)
query1 = str(sql1)
curs2.execute(query1)
sql2 = 'create table Validation_Fold%d_%s(n float(10));' % (i + 1, keyword)
query2 = str(sql2)
curs2.execute(query2)
for j in tempA:
sql3 = 'insert into Training_Fold%d_%s (n) values (%s)' % (i + 1, keyword, str(j[0]))
query3 = str(sql3)
curs2.execute(query3)
for j in tempB:
sql4 = 'insert into Validation_Fold%d_%s (n) values (%s)' % (i + 1, keyword, str(j[0]))
query4 = str(sql4)
curs2.execute(query4)
NoOfData = int(raw_data.shape[0])
Fold = 4
NoOfFold_Data = int(NoOfData / Fold)
########### Labeling
# Validation Data set
for i in range(Fold):
temp_label = All_Label.iloc[FoldDataNo * i:FoldDataNo * (i + 1)]
temp_Label_Final = np.array(temp_label)
s = 'ValidationFold_Label%d = temp_Label_Final' % (i + 1)
exec(s)
# Training Data set
for i in range(Fold):
temp_Train_Front = All_Label.iloc[:FoldDataNo * i]
temp_Train_Back = All_Label.iloc[FoldDataNo * (i + 1):]
temp_Train_Total = np.concatenate([temp_Train_Front, temp_Train_Back], axis=0)
temp_Train_Final = np.array(temp_Train_Total)
s = 'TrainingFold_Label%d = temp_Train_Final' % (i + 1)
exec(s)
# for SVM & KNN
for i in range(Fold):
s1 = 'tempA=TrainingFold_Label%d' % (i + 1)
exec(s1)
s2 = 'tempB=ValidationFold_Label%d' % (i + 1)
exec(s2)
sql1 = 'create table TrainingFold_Label%d_%s(n float(10));' % (i + 1, keyword)
query1 = str(sql1)
curs2.execute(query1)
sql2 = 'create table ValidationFold_Label%d_%s(n float(10));' % (i + 1, keyword)
query2 = str(sql2)
curs2.execute(query2)
for j in tempA:
sql3 = 'insert into TrainingFold_Label%d_%s (n) values (%s)' % (i + 1, keyword, str(j))
query3 = str(sql3)
curs2.execute(query3)
for j in tempB:
sql4 = 'insert into ValidationFold_Label%d_%s (n) values (%s)' % (i + 1, keyword, str(j))
query4 = str(sql4)
curs2.execute(query4)
temp_Train = np.concatenate((date_array, date_array), axis=0)
temp_Train_Final = np.concatenate((temp_Train, temp_Train), axis=0)
Training_All = np.array(temp_Train_Final)
Training_All_Label1 = np.array(All_Label)
Training_All_Label = np.array([[0]], dtype=float)
for i in Training_All_Label1:
a = np.array([[i]])
Training_All_Label = np.concatenate((Training_All_Label, a), axis=0)
Training_All_Label = np.delete(Training_All_Label, 0, 0)
sql1 = 'create table Training_All_%s(n float(10))' % (keyword)
query1 = str(sql1)
curs2.execute(query1)
sql2 = 'create table Training_All_Label_%s(n float(10))' % (keyword)
query2 = str(sql2)
curs2.execute(query2)
for i in Training_All:
sql1 = 'insert into Training_All_%s (n) values (%s)' % (keyword, str(i[0]))
query1 = str(sql1)
curs2.execute(query1)
for i in Training_All_Label:
sql1 = 'insert into Training_All_Label_%s (n) values (%s)' % (keyword, str(i[0]))
query1 = str(sql1)
curs2.execute(query1)
#############################################################################################
Fold = 4
date_array = np.array([[0]], dtype=int)
date_list = np.linspace(0, 365, 156)
for i in date_list:
date = round(i)
date_ = np.array([[date]], dtype=int)
date_array = np.concatenate((date_array, date_), axis=0)
date_array = np.delete(date_array, 0, 0)
# k-fold 학습/검증 데이터
for i in range(Fold):
query1 = 'select * from Training_Fold%d_%s' % (i + 1, keyword)
curs2.execute(query1)
array1 = curs2.fetchall()
c1 = 'Training_Fold%d = np.array(array1)' % (i + 1)
exec(c1)
query2 = 'select * from Validation_Fold%d_%s' % (i + 1, keyword)
curs2.execute(query2)
array2 = curs2.fetchall()
c2 = 'Validation_Fold%d = np.array(array2)' % (i + 1)
exec(c2)
# K-fold 학습/검증 레이블
for i in range(Fold):
query1 = 'select * from TrainingFold_Label%d_%s' % (i + 1, keyword)
curs2.execute(query1)
array1 = curs2.fetchall()
c1 = 'TrainingFold_Label%d = np.array(array1)' % (i + 1)
exec(c1)
query2 = 'select * from ValidationFold_Label%d_%s' % (i + 1, keyword)
curs2.execute(query2)
array2 = curs2.fetchall()
c2 = 'ValidationFold_Label%d = np.array(array2)' % (i + 1)
exec(c2)
# 전체 학습용 데이터
query1 = 'select * from Training_All_%s' % (keyword)
curs2.execute(query1)
array1 = curs2.fetchall()
c1 = 'Training_All = np.array(array1)'
exec(c1)
query2 = 'select * from Training_All_Label_%s' % (keyword)
curs2.execute(query2)
array2 = curs2.fetchall()
c2 = 'Training_All_Label = np.array(array2)'
exec(c2)
############ KNN
for i in range(Fold):
c1 = 'Training_CurrentFold = Training_Fold%d' % (i + 1)
exec(c1)
c2 = 'Validation_CurrentFold = Validation_Fold%d' % (i + 1)
exec(c2)
c3 = 'knnModel_CurrentFold = KNeighborsClassifier(n_neighbors = 3).fit(Training_CurrentFold , TrainingFold_Label%d.ravel())' % (
i + 1)
exec(c3)
c4 = 'knnscore_Fold%d = knnModel_CurrentFold.score(Validation_CurrentFold , ValidationFold_Label%d)' % (
i + 1, i + 1)
exec(c4)
KNN_model = KNeighborsClassifier(n_neighbors=3).fit(Training_All, Training_All_Label.ravel())
KNN_predict = KNN_model.predict(date_array)
############ SVM
for i in range(Fold):
c1 = 'Training_CurrentFold = Training_Fold%d' % (i + 1)
exec(c1)
c2 = 'Validation_CurrentFold = Validation_Fold%d' % (i + 1)
exec(c2)
svmModel_CurrentFold = svm.SVC(kernel='rbf')
c3 = 'svmModel_CurrentFold.fit(Training_CurrentFold , TrainingFold_Label%d.ravel())' % (i + 1)
exec(c3)
Predicted = np.array(svmModel_CurrentFold.predict(Validation_CurrentFold))
c4 = 'svmscore_Fold%d = metrics.accuracy_score(ValidationFold_Label%d , Predicted)' % (i + 1, i + 1)
exec(c4)
SVM_model = svm.SVC(kernel='rbf')
SVM_model.fit(Training_All, Training_All_Label.ravel())
SVM_predict = SVM_model.predict(date_array)
#################################################
sql1 = "create table " + keyword + "_MLaccuracy (KNN float(10),SVM float(10))"
sql2 = "create table " + keyword + "_MLpredict (KNN float(10),SVM float(10))"
query1 = str(sql1)
query2 = str(sql2)
curs1.execute(query1)
curs1.execute(query2)
for i in range(Fold):
s1 = 'values1=round(knnscore_Fold%d,4)' % (i + 1)
exec(s1)
s2 = 'values2=round(svmscore_Fold%d,4)' % (i + 1)
exec(s2)
values1 = values1 * 100
values1 = str(values1)
values2 = values2 * 100
values2 = str(values2)
values = (values1, values2)
values = (values1, values2)
sql1 = "insert into " + keyword + "_MLaccuracy (KNN,SVM) values(%s,%s)"
query1 = str(sql1)
curs1.execute(query1, values)
for i in range(156):
value1 = (str(KNN_predict[i]), str(SVM_predict[i]))
sql1 = "insert into " + keyword + "_MLpredict (KNN,SVM) values(%s,%s)"
query1 = str(sql1)
curs1.execute(query1, value1)
value2 = keyword
sql2 = "insert into MLpredict_list_male (word) values (%s)"
curs1.execute(sql2, value2)
conn1.commit()
conn1.close()
conn2.commit()
conn2.close()