forked from mdmeadows/DSM-to-DTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeo_process_NTL.py
162 lines (123 loc) · 9.29 KB
/
geo_process_NTL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Process: Night-Time Light (NTL) datasets available
# - 2000: DMSP - https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
# - 2018: VIIRS - https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
# Import required packages
import os, sys, subprocess
# Import helper functions relevant to this script
sys.path.append('E:/mdm123/D/scripts/geo/')
from geo_helpers import extract_projection_info, get_geotiff_projection, create_bounded_geotiff
# List paths to GDAL scripts
gdal_warp = 'C:/Anaconda3/envs/geo/Library/bin/gdalwarp.exe'
gdal_calc = 'C:/Anaconda3/envs/geo/Scripts/gdal_calc.py'
# Define paths to NTL & LiDAR folders
folder_ntl = 'E:/mdm123/D/data/NTL/'
folder_srtm = 'E:/mdm123/D/data/DSM/SRTM/'
# Define list of zones to be processed (separate LiDAR coverage areas)
zones = ['MRL18_WPE', 'MRL18_WVL', 'MRL18_WKW', 'MRL18_FGA', 'TSM17_STA', 'TSM17_LDM', 'TSM17_GLB', 'TSM16_ATG']
# Define dictionary to hold information relating to each zone covered by the Marlborough (2018) survey
dtm_dict = {'MRL18_WPE':{'label':'Wairau Plains East (Marlborough 2018)', 'year':'2018'},
'MRL18_WVL':{'label':'Wairau Valley (Marlborough 2018)', 'year':'2018'},
'MRL18_WKW':{'label':'Picton - Waikawa (Marlborough 2018)', 'year':'2018'},
'MRL18_FGA':{'label':'Flaxbourne, Grassmere & Lower Awatere (Marlborough 2018)', 'year':'2018'},
'TSM17_STA':{'label':'St Arnaud (Tasman 2017)', 'year':'2017'},
'TSM17_LDM':{'label':'Lee Dam (Tasman 2017)', 'year':'2017'},
'TSM17_GLB':{'label':'Golden Bay & Farewell Spit (Tasman 2017)', 'year':'2017'},
'TSM16_ATG':{'label':'Abel Tasman & Golden Bay (Tasman 2016)', 'year':'2016'}}
# Define the number of cells of padding to add along each raster boundary
pad = 44
###############################################################################
# 1. Manually download the NTL datasets from the NOAA website (links below) #
###############################################################################
# Download manually from NOAA website
# - DMSP data: https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
# - VIIRS data: https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
###############################################################################
# 2. Resample each NTL raster to match SRTM resolution/alignment #
###############################################################################
# Define list of the layers available for DMSP
dmsp_layers = ['avg_vis', 'avg_vis_stable', 'pct_lights', 'avg_lights_pct']
# Define dictionary specifying each of the DMSP NTL layers available
dmsp_dict = {'avg_vis':{'folder':'F152000.v4', 'suffix':'_web.avg_vis'},
'avg_vis_stable':{'folder':'F152000.v4', 'suffix':'_web.stable_lights.avg_vis'},
'pct_lights':{'folder':'F152000.v4b.avg_lights_x_pct', 'suffix':'.pct_lights'},
'avg_lights_pct':{'folder':'F152000.v4b.avg_lights_x_pct', 'suffix':'.avg_lights_x_pct'}}
# Define list of resampling methods to try
resampling_options = ['near', 'bilinear', 'cubic', 'cubicspline', 'lanczos']
# Loop through all survey zones, warping each NTL raster to align with the corresponding SRTM grid
for zone in zones:
print('\nProcessing NTL data for {}...'.format(dtm_dict[zone]['label']))
# 2a. Read desired properties from SRTM raster covering that zone
# Read the appropriate SRTM DSM raster into memory & retrieve its properties
print(' - Analysing zonal SRTM raster to align grids...')
srtm_filename = '{}proc/{}/SRTM_{}_Z.tif'.format(folder_srtm, zone, zone)
srtm_proj, srtm_res_x, srtm_res_y, srtm_x_min, srtm_x_max, srtm_y_min, srtm_y_max, srtm_width, srtm_height = extract_projection_info(srtm_filename)
# Define a new bounding box, including the padding required for the 2D convnet data pre-processing
pad_x_min = srtm_x_min - pad*srtm_res_x
pad_x_max = srtm_x_max + pad*srtm_res_x
pad_y_min = srtm_y_min - pad*-srtm_res_y
pad_y_max = srtm_y_max + pad*-srtm_res_y
pad_width = srtm_width + 2*pad
pad_height = srtm_height + 2*pad
print(' - Processing NTL datasets available...', end=' ')
# 2b. Resample VIIRS NTL data, testing a variety of different upsampling approaches
# Create new folder for resampled rasters, if it doesn't exist already
folder_viirs_zone = '{}/VIIRS/proc/{}/'.format(folder_ntl, zone)
if not os.path.exists(folder_viirs_zone):
os.makedirs(folder_viirs_zone)
# Define path to selected VIIRS raster
viirs_path = '{}VIIRS/raw/SVDNB_npp_20180801-20180831_00N060E_vcmcfg_v10_c201809070900.avg_rade9h.tif'.format(folder_ntl)
# Open the VIIRS raster file and extract its coordinate reference system (CRS)
viirs_proj = get_geotiff_projection(viirs_path)
# Loop through all resampling options considered, generating an upsampled raster for that VIIRS layer with each
for resampling in resampling_options:
# Upsample 500m VIIRS NTL raster to 30m grid matching PADDED SRTM raster (using the selected resampling method)
viirs_upsample = '{}VIIRS/proc/{}/NTL_VIIRS_{}_{}_Pad44.tif'.format(folder_ntl, zone, zone, resampling)
warp_command = [gdal_warp, '-overwrite', viirs_path, viirs_upsample, '-ot', 'Float32', '-s_srs', viirs_proj, '-t_srs', 'EPSG:4326', '-tr', str(srtm_res_x), str(-srtm_res_y), '-te', str(pad_x_min), str(pad_y_min), str(pad_x_max), str(pad_y_max), '-te_srs', 'EPSG:4326', '-r', resampling, '-dstnodata', '-9999']
warp_result = subprocess.run(warp_command, stdout=subprocess.PIPE)
if warp_result.returncode != 0:
print(warp_result.stdout)
break
# Clip the generated raster to the UNPADDED SRTM extent too
viirs_clip = '{}VIIRS/proc/{}/NTL_VIIRS_{}_{}.tif'.format(folder_ntl, zone, zone, resampling)
clip_command = [gdal_warp, '-overwrite', viirs_upsample, viirs_clip, '-s_srs', 'EPSG:4326', '-t_srs', 'EPSG:4326', '-tr', str(srtm_res_x), str(-srtm_res_y), '-te', str(srtm_x_min), str(srtm_y_min), str(srtm_x_max), str(srtm_y_max), '-te_srs', 'EPSG:4326', '-r', 'near', '-dstnodata', '-9999']
clip_result = subprocess.run(clip_command, stdout=subprocess.PIPE)
if clip_result.returncode != 0:
print(clip_result.stdout)
break
print('VIIRS', end=' ')
# 2c. Resample DMSP NTL data, testing a variety of different upsampling approaches
# Create new folder for resampled rasters, if it doesn't exist already
folder_dmsp_zone = '{}/DMSP/proc/{}/'.format(folder_ntl, zone)
if not os.path.exists(folder_dmsp_zone):
os.makedirs(folder_dmsp_zone)
# Loop through all DMSP NTL rasters available
for layer in dmsp_layers:
# Define path to selected DMSP raster
dmsp_subfolder = dmsp_dict[layer]['folder']
dmsp_suffix = dmsp_dict[layer]['suffix']
dmsp_path = '{}DMSP/raw/{}/F152000.v4b{}.tif'.format(folder_ntl, dmsp_subfolder, dmsp_suffix)
# Open the DMSP raster file and extract its coordinate reference system (CRS)
dmsp_proj = get_geotiff_projection(dmsp_path)
# Loop through all resampling options considered, generating an upsampled raster for that DMSP layer with each
for resampling in resampling_options:
# Upsample DMSP NTL raster to 30m grid matching PADDED SRTM raster (using the selected resampling method)
dmsp_upsample = '{}DMSP/proc/{}/NTL_DMSP_{}_{}_{}_Pad44.tif'.format(folder_ntl, zone, layer, zone, resampling)
warp_command = [gdal_warp, '-overwrite', dmsp_path, dmsp_upsample, '-ot', 'Float32', '-s_srs', dmsp_proj, '-t_srs', 'EPSG:4326', '-tr', str(srtm_res_x), str(-srtm_res_y), '-te', str(pad_x_min), str(pad_y_min), str(pad_x_max), str(pad_y_max), '-te_srs', 'EPSG:4326', '-r', resampling, '-dstnodata', '-9999']
warp_result = subprocess.run(warp_command, stdout=subprocess.PIPE)
if warp_result.returncode != 0:
print(warp_result.stdout)
break
# Clip the generated raster to the UNPADDED SRTM extent too
dmsp_clip = '{}DMSP/proc/{}/NTL_DMSP_{}_{}_{}.tif'.format(folder_ntl, zone, layer, zone, resampling)
clip_command = [gdal_warp, '-overwrite', dmsp_upsample, dmsp_clip, '-s_srs', 'EPSG:4326', '-t_srs', 'EPSG:4326', '-tr', str(srtm_res_x), str(-srtm_res_y), '-te', str(srtm_x_min), str(srtm_y_min), str(srtm_x_max), str(srtm_y_max), '-te_srs', 'EPSG:4326', '-r', 'near', '-dstnodata', '-9999']
clip_result = subprocess.run(clip_command, stdout=subprocess.PIPE)
if clip_result.returncode != 0:
print(clip_result.stdout)
break
# For "pct_lights", generated BOUNDED versions (0-100), since "pct_lights" is percentage
if layer == 'pct_lights':
dmsp_upsample_bounded = '{}DMSP/proc/{}/NTL_DMSP_{}_{}_{}_Bounded_Pad44.tif'.format(folder_ntl, zone, layer, zone, resampling)
dmsp_clip_bounded = '{}DMSP/proc/{}/NTL_DMSP_{}_{}_{}_Bounded.tif'.format(folder_ntl, zone, layer, zone, resampling)
create_bounded_geotiff(dmsp_upsample, dmsp_upsample_bounded, 0., 100., -9999)
create_bounded_geotiff(dmsp_clip, dmsp_clip_bounded, 0., 100., -9999)
print('DMSP')