-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathsimulator.py
267 lines (217 loc) · 8.36 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
import argparse
import numpy as np
from world import World
from PythonQt import QtGui
from net import Controller
from sensor import RaySensor
from director import applogic
from moving_object import Robot
from director import vtkAll as vtk
from director import objectmodel as om
from director.debugVis import DebugData
from director import visualization as vis
from director.consoleapp import ConsoleApp
from director.timercallback import TimerCallback
class Simulator(object):
"""Simulator."""
def __init__(self, world):
"""Constructs the simulator.
Args:
world: World.
"""
self._robots = []
self._obstacles = []
self._world = world
self._app = ConsoleApp()
self._view = self._app.createView(useGrid=False)
# performance tracker
self._num_targets = 0
self._num_crashes = 0
self._run_ticks = 0
self._initialize()
def _initialize(self):
"""Initializes the world."""
# Add world to view.
om.removeFromObjectModel(om.findObjectByName("world"))
vis.showPolyData(self._world.to_polydata(), "world")
def _add_polydata(self, polydata, frame_name, color):
"""Adds polydata to the simulation.
Args:
polydata: Polydata.
frame_name: Frame name.
color: Color of object.
Returns:
Frame.
"""
om.removeFromObjectModel(om.findObjectByName(frame_name))
frame = vis.showPolyData(polydata, frame_name, color=color)
vis.addChildFrame(frame)
return frame
def add_target(self, target):
data = DebugData()
center = [target[0], target[1], 1]
axis = [0, 0, 1] # Upright cylinder.
data.addCylinder(center, axis, 2, 3)
om.removeFromObjectModel(om.findObjectByName("target"))
self._add_polydata(data.getPolyData(), "target", [0, 0.8, 0])
def add_robot(self, robot):
"""Adds a robot to the simulation.
Args:
robot: Robot.
"""
color = [0.4, 0.85098039, 0.9372549]
frame_name = "robot{}".format(len(self._robots))
frame = self._add_polydata(robot.to_polydata(), frame_name, color)
self._robots.append((robot, frame))
self._update_moving_object(robot, frame)
def add_obstacle(self, obstacle):
"""Adds an obstacle to the simulation.
Args:
obstacle: Obstacle.
"""
color = [1.0, 1.0, 1.0]
frame_name = "obstacle{}".format(len(self._obstacles))
frame = self._add_polydata(obstacle.to_polydata(), frame_name, color)
self._obstacles.append((obstacle, frame))
self._update_moving_object(obstacle, frame)
def _update_moving_object(self, moving_object, frame):
"""Updates moving object's state.
Args:
moving_object: Moving object.
frame: Corresponding frame.
"""
t = vtk.vtkTransform()
t.Translate(moving_object.x, moving_object.y, 0.0)
t.RotateZ(np.degrees(moving_object.theta))
frame.getChildFrame().copyFrame(t)
def _update_sensor(self, sensor, frame_name):
"""Updates sensor's rays.
Args:
sensor: Sensor.
frame_name: Frame name.
"""
vis.updatePolyData(sensor.to_polydata(), frame_name,
colorByName="RGB255")
def update_locator(self):
"""Updates cell locator."""
d = DebugData()
d.addPolyData(self._world.to_polydata())
for obstacle, frame in self._obstacles:
d.addPolyData(obstacle.to_positioned_polydata())
self.locator = vtk.vtkCellLocator()
self.locator.SetDataSet(d.getPolyData())
self.locator.BuildLocator()
def run(self, display):
"""Launches and displays the simulator.
Args:
display: Displays the simulator or not.
"""
if display:
widget = QtGui.QWidget()
layout = QtGui.QVBoxLayout(widget)
layout.addWidget(self._view)
widget.showMaximized()
# Set camera.
applogic.resetCamera(viewDirection=[0.2, 0, -1])
# Set timer.
self._tick_count = 0
self._timer = TimerCallback(targetFps=120)
self._timer.callback = self.tick
self._timer.start()
self._app.start()
def tick(self):
"""Update simulation clock."""
self._tick_count += 1
self._run_ticks += 1
if self._tick_count >= 500:
print("timeout")
for robot, frame in self._robots:
self.reset(robot, frame)
need_update = False
for obstacle, frame in self._obstacles:
if obstacle.velocity != 0.:
obstacle.move()
self._update_moving_object(obstacle, frame)
need_update = True
if need_update:
self.update_locator()
for i, (robot, frame) in enumerate(self._robots):
self._update_moving_object(robot, frame)
for sensor in robot.sensors:
sensor.set_locator(self.locator)
robot.move()
for sensor in robot.sensors:
frame_name = "rays{}".format(i)
self._update_sensor(sensor, frame_name)
if sensor.has_collided():
self._num_crashes += 1
print("collided", min(d for d in sensor._distances if d > 0))
print("targets hit", self._num_targets)
print("ticks lived", self._run_ticks)
print("deaths", self._num_crashes)
self._run_ticks = 0
self._num_targets = 0
new_target = self.generate_position()
for robot, frame in self._robots:
robot.set_target(new_target)
self.add_target(new_target)
self.reset(robot, frame)
if robot.at_target():
self._num_targets += 1
self._tick_count = 0
new_target = self.generate_position()
for robot, frame in self._robots:
robot.set_target(new_target)
self.add_target(new_target)
def generate_position(self):
return tuple(np.random.uniform(-75, 75, 2))
def set_safe_position(self, robot):
while True:
robot.x, robot.y = self.generate_position()
robot.theta = np.random.uniform(0, 2 * np.pi)
if min(robot.sensors[0].distances) >= 0.30:
return
def reset(self, robot, frame_name):
self._tick_count = 0
self.set_safe_position(robot)
self._update_moving_object(robot, frame_name)
robot._ctrl.save()
def get_args():
"""Gets parsed command-line arguments.
Returns:
Parsed command-line arguments.
"""
parser = argparse.ArgumentParser(description="avoids obstacles")
parser.add_argument("--obstacle-density", default=0.01, type=float,
help="area density of obstacles")
parser.add_argument("--moving-obstacle-ratio", default=0.0, type=float,
help="percentage of moving obstacles")
parser.add_argument("--exploration", default=0.5, type=float,
help="exploration rate")
parser.add_argument("--learning-rate", default=0.01, type=float,
help="learning rate")
parser.add_argument("--no-display", action="store_false", default=True,
help="whether to display the simulator or not",
dest="display")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
world = World(200, 200)
sim = Simulator(world)
for obstacle in world.generate_obstacles(args.obstacle_density,
args.moving_obstacle_ratio):
sim.add_obstacle(obstacle)
sim.update_locator()
target = sim.generate_position()
sim.add_target(target)
controller = Controller(args.learning_rate)
controller.load()
robot = Robot(exploration=args.exploration)
robot.set_target(target)
robot.attach_sensor(RaySensor())
robot.set_controller(controller)
sim.set_safe_position(robot)
sim.add_robot(robot)
sim.run(args.display)
controller.save()