-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagisoft-pre-bg-removal.py
349 lines (281 loc) · 10.5 KB
/
agisoft-pre-bg-removal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""
*********READ THIS FIRST**************
TO USE THIS CODE ON A NEW COMPUTER:
* open "Run"
* type "cmd" into the box and press "Ctrl+Shift+Enter" to run as administrator
* cd "%programfiles%\Agisoft\PhotoScan Pro\python"
* python.exe -m pip install numpy
* python.exe -m pip install scipy
if you get an "Access Denied" error while installing the libraries,
or get an import error in the agisoft console when running this program,
then this process has not been done correctly
TO RUN:
* open agisoft on an EMPTY PROJECT
* go to toolbar at the top of the screen, and select Tools->Run Script (or type Ctrl+R)
* find this code in your file system (agisoft-automation.py)
* File selection UI will pop up. Select folder which contains folders of photos of sherds
* select folder to save projects to
**************************************
the steps above ensure the correct libraries are imported
these are imported to make dominant-color-finding code work for the removal of the holder/bg.
todo:
make a flat 2x2inch metal square for calibration tests
make it work with his directory system (see slack for example)
continue the domaninant-color finding code:
change the number of clusters, in case we get a big sherd with multiple colors?
adjust how you calculate the tolerance
agisoft automation code
IN PROGRESS
by Jessica Teipel
code used to determine background colors based on the following: https://stackoverflow.com/questions/3241929/python-find-dominant-most-common-color-in-an-image
takes a set of photos, masks them, adds scale bars, and builds the model
"""
import PhotoScan
import os
from os import walk
import math
import codecs
import struct
import numpy as np
import scipy
import scipy.misc
import scipy.cluster
def promptForFileLocation():
dirOfDirs = PhotoScan.app.getExistingDirectory("Choose Directory with folders of photos")
saveDir = PhotoScan.app.getExistingDirectory("Choose Directory to save projects in")
dirList = []
for (dirpath, dirnames, filenames) in walk(dirOfDirs):
dirList.extend(dirnames)
break
return [saveDir, dirOfDirs, dirList]
def getPhotosFromDir(photoDir):
photos = os.listdir(photoDir)
return photos
def importPhotos(photoDir, chunk):
i = 0
while (i < len(photos)):
photos[i] = str(photoDir + "/" + photos[i])
i += 1
chunk.addPhotos(photos)
def alignPhotos(chunk):
for frame in chunk.frames:
frame.matchPhotos()
chunk.alignCameras()
def scaling(chunk):
SCALEBAR_DISTANCE = .03 # 3cm
chunk.detectMarkers(PhotoScan.TargetType.CrossTarget, 50) # put this back in
markers = chunk.markers
# for each marker found, find all the markers that are closest to this marker
# since distances will not be exactly the same,
# the "tolerance" value is used to determine if they are "almost" the same distance
tolerance = .1
i = 0;
listOfLists = [[]]*len(markers)
minDistance = [100000]*len(markers)
print(listOfLists)
while i < len(markers):
j = 0
while j < len(markers):
if i != j :
dist = getDistance(markers[i].position, markers[j].position)
if dist < minDistance[i]-minDistance[i]*tolerance:
minDistance[i] = dist
(listOfLists[i]) = []
listOfLists[i].append(j)
elif dist > minDistance[i]-minDistance[i]*tolerance and dist < minDistance[i]+minDistance[i]*tolerance:
minDistance[i] = (minDistance[i]*len(listOfLists[i]) + dist)/float((len(listOfLists[i])+1))
listOfLists[i].append(j)
j = j+1
i = i+1
## for debugging:
#print("list of closest points:")
#print(listOfLists)
#print("their distances:")
#print(minDistance)
# step 1 in ensuring good markers are chosen for the scalebars:
# remove any points which are unusually close to or unusually far away from their neighbors
removablePoints = eliminateOutliers(minDistance)
#print("bad points: " + str(removablePoints))
# step 2 in ensuring good markers are chosen for the scalebars:
# get a list of all markers which are not outliers and have EXACTLY four closest neighbors
i = 0
goodMarkers = []
while i < len(listOfLists):
if i not in removablePoints:
if len(listOfLists[i]) == 4:
goodMarkers.append(i)
i = i+1
for marker in goodMarkers:
print(str(marker) + ":" + str(listOfLists[marker]))
# potential step 3?
# only create a scalebar if both the marker and it's neighbor were classified as good markers in step 2?
# if enough good markers are found after step 2, use these markers
# if there are not enough, the markers which were considered "good" after step 1 will have to suffice
if( len(goodMarkers) >= 2):
for marker in goodMarkers:
for marker2 in listOfLists[marker]:
scalebar = chunk.addScalebar(markers[marker], markers[marker2])
scalebar.Reference.distance = SCALEBAR_DISTANCE
else:
marker = 0
while marker < len(listOfLists):
if marker not in removablePoints:
for marker2 in listOfLists[marker]:
scalebar = chunk.addScalebar(markers[marker], markers[marker2])
scalebar.Reference.distance = SCALEBAR_DISTANCE
marker = marker + 1
def sq(x):
return x*x
def getDistance(point1, point2):
return math.sqrt(sq(point1.x-point2.x) + sq(point1.y-point2.y) + sq(point1.z-point2.z))
def getDistanceColor(array1, array2):
return math.sqrt(sq(array1[0]-array2[0]) + sq(array1[1]-array2[1]) + sq(array1[2]-array2[2]))
def eliminateOutliers(list):
newList = sorted(list)
outliers = []
medianLocation = len(newList)/2
median = newList[int(medianLocation)]
Q1MedLoc = len(newList)/4
Q2MedLoc = 3*len(newList)/4
Q1Med = newList[int(Q1MedLoc)]
Q2Med = newList[int(Q2MedLoc)]
interquartRange = Q2Med - Q1Med
lowerBound = median - interquartRange*.5#*1.5 #normally multiplied by 1.5, but we want more precision
upperBound = median + interquartRange*.5#*1.5
i=0
while i < len(list):
if list[i] < lowerBound or list[i] > upperBound:
outliers.append(i)
i = i+1
return outliers
def buildDenseCloud(chunk):
chunk.buildDepthMaps()
chunk.buildDenseCloud(PhotoScan.MediumQuality)
# finds the most common colors in the given photo, and returns them as array of RGB (i.e. [[r,g,b],[r,g,b]...])
def findBGColors(chunk):
photo = chunk.cameras[0].photo.image()
NUM_CLUSTERS = 4
img = photo.copy()
img = img.resize(150, 150) # optional, to reduce time
print("resized")
# convert photoscan image object to 2d array of pixels, each with rgb values
ar = np.fromstring(img.tostring(), dtype=np.uint8)
ar = ar.reshape(img.height, img.width, img.cn)
# the algorithm that finds most common colors. idk the details
shape = ar.shape
ar = ar.reshape(scipy.product(shape[:2]), shape[2]).astype(float)
print('finding clusters')
codes, dist = scipy.cluster.vq.kmeans(ar, NUM_CLUSTERS)
vecs, dist = scipy.cluster.vq.vq(ar, codes) # assign codes
counts, bins = scipy.histogram(vecs, len(codes)) # count occurrences
i=0
sorted_colors = codes.copy()
sorted_counts = counts.copy()
while i < NUM_CLUSTERS:
j=i+1
while j < NUM_CLUSTERS:
if sorted_counts[j] > sorted_counts[i]:
sorted_counts[j], sorted_counts[i] = sorted_counts[i], sorted_counts[j]
sorted_colors[j], sorted_colors[i] = sorted_colors[i].copy(), sorted_colors[j].copy()
j = j+1
i = i+1
index_max = scipy.argmax(counts) # find most frequent, if you want
print('cluster centres:\n', sorted_colors)
print('num occurences:', sorted_counts)
# return the most common colors
return sorted_colors
# haven't found documentation in agisoft to find the selected points and determine if it's null
# so the try catches are a work around the agisoft error halting the process
# i.e. if no points are found, just move on to the next color
'''
def removeBG(chunk):
denseCloud = chunk.dense_cloud
denseCloud.selectPointsByColor([56, 239, 126], 80, 'RGB') # green paint: [R: 56 G: 239 B: 126]
try:
denseCloud.removeSelectedPoints()
finally:
denseCloud.selectPointsByColor([53, 59, 47], 50, 'RGB') #black
try:
denseCloud.removeSelectedPoints()
finally:
denseCloud.selectPointsByColor([231, 234, 239], 15, 'RGB') #white
try:
denseCloud.removeSelectedPoints()
finally:
denseCloud.selectPointsByColor([4, 62, 12], 80, 'RGB') # darker green
try:
denseCloud.removeSelectedPoints()
finally:
return
"""
## another option???
# denseCloud.selectMaskedPoints(cameras, softness=4)
# denseCloud.removeSelectedPoints([pointClass])
"""
'''
def removeBG(chunk, colors):
white = [255,255,255]
black = [0,0,0]
#green = [0, 255, 0]
removeBGColor(chunk, colors, white)
removeBGColor(chunk, colors, black)
#removeBGColor(chunk, colors, green)
def removeBGColor(chunk, colors, ideal):
denseCloud = chunk.dense_cloud
closestToIdeal, distance = getClosestColor(colors, ideal)
denseCloud.selectPointsByColor(ideal, int(.5*(distance)))
try:
denseCloud.removeSelectedPoints()
finally:
return;
#closestToActualColor, tolerance = getClosestColor(colors, colors[closestToIdeal])
#denseCloud.selectPointsByColor(colors[closestToIdeal], int(tolerance**(1./3)))# todo: find way to better calculate tolerance))
#try:
#denseCloud.removeSelectedPoints()
#finally:
# return
def getClosestColor(colors, ideal):
closestToIdeal = 0
distance = float('inf')
i=0
while i< len(colors):
colorDistance = getDistanceColor(colors[i], ideal)
if colorDistance < distance and colorDistance != 0:
closestToIdeal = i
distance = colorDistance
i = i+1
return closestToIdeal, distance
def buildModel(chunk):
chunk.buildModel(surface=PhotoScan.Arbitrary, interpolation=PhotoScan.EnabledInterpolation)
def buildTexture(chunk):
chunk.buildUV()
chunk.buildTexture()
# main workflow.
# I have created functions so that each step in the manual process is a single function call here
#[saveDir, dirOfDirs, dirList] = promptForFileLocation()
#colors = findBGColors(PhotoScan.app.document.chunk)
#removeBG(PhotoScan.app.document.chunk, colors)
#scaling(PhotoScan.app.document.chunk)
#i = 0;
#while(i < len(dirList)):
#photoDir = dirOfDirs + "/" + dirList[i]
#photos = getPhotosFromDir(photoDir)
doc = PhotoScan.app.document
# a work around to make a "new" document
#doc.clear()
#chunk = doc.addChunk()
chunk = doc.chunk
#importPhotos(photoDir, chunk)
alignPhotos(chunk)
buildDenseCloud(chunk)
scaling(chunk)
"""findBGColors(photoDir + "/" + photos[0])
colors = findBGColors(PhotoScan.app.document.chunk)
removeBG(PhotoScan.app.document.chunk, colors)
buildModel(chunk)
buildTexture(chunk)
#removeLighting(color_mode=SingleColor, internal_blur=1.0, mesh_noise_suppression=1.5, ambient_occlusion_path=’‘, ambient_occlusion_multiplier=1.0[, progress])
#doc.save(saveDir + "/" + dirList[i] + ".psx")
#i = i+1
#PhotoScan.app.quit()
"""