-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
63 lines (47 loc) · 1.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
from datetime import date
import yfinance as yf
from fbprophet import Prophet
from fbprophet.plot import plot_plotly
from plotly import graph_objs as go
START ="2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title("Stock Prediction App")
st.subheader("This is an example of Time-Series Forecasting")
stocks = ("AAPL","GOOGL","TSLA","GME","NFLX","ARKK","NDAQ","SPX","BTC-USD","ETH-USD","ADA-USD","CL=F") #Could swap IEX stock info here
selected_stock = st.selectbox("Select dataset for prediction", stocks)
n_years =st.slider("Years of prediction:",1, 4)
period = n_years * 365
#cache data
@st.cache
def load_data(ticker):
data = yf.download(ticker,START,TODAY)
data.reset_index(inplace=True)
return data
data_load_state = st.text("Load data...")
data = load_data(selected_stock)
data_load_state = st.text("Loading data... complete!")
st.subheader('Raw data')
st.write(data.tail())
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name='stock_open'))
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name='stock_close'))
fig.layout.update(title_text="Time Series Data", xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data()
#forecasting with fbprohet
df_train =data[['Date','Close']]
df_train = df_train.rename(columns={"Date":"ds","Close":"y"})
m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods = period)
forecast = m.predict(future)
st.subheader('Forecast data')
st.write(forecast.tail())
st.subheader('The Forecast')
fig1 =plot_plotly(m, forecast)
st.plotly_chart(fig1)
st.subheader('Forecast Components')
fig2=m.plot_components(forecast)
st.write(fig2)