-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconvert.py
executable file
·467 lines (375 loc) · 14.9 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# -*- coding: utf-8 -*- #
"""*********************************************************************************************"""
# FileName [ convert.py ]
# Synopsis [ testing functions for voice conversion ]
# Author [ Ting-Wei Liu (Andi611) ]
# Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ]
"""*********************************************************************************************"""
###############
# IMPORTATION #
###############
import os
import glob
import h5py
import json
import copy
import torch
import librosa
import numpy as np
import soundfile as sf
import speech_recognition as sr
from jiwer import wer
from tqdm import tqdm
from scipy import signal
from trainer import Trainer
from hps.hps import hp, Hps
from torch.autograd import Variable
from preprocess import get_spectrograms
from model.tacotron.text.symbols import symbols
############
# CONSTANT #
############
MIN_LEN = 9
def griffin_lim(spectrogram): # Applies Griffin-Lim's raw.
def _invert_spectrogram(spectrogram): # spectrogram: [f, t]
return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
X_best = copy.deepcopy(spectrogram)
for i in range(hp.n_iter):
X_t = _invert_spectrogram(X_best)
est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length)
phase = est / np.maximum(1e-8, np.abs(est))
X_best = spectrogram * phase
X_t = _invert_spectrogram(X_best)
y = np.real(X_t)
return y
def spectrogram2wav(mag): # Generate wave file from spectrogram
mag = mag.T # transpose
mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # de-noramlize
mag = np.power(10.0, mag * 0.05) # to amplitude
wav = griffin_lim(mag) # wav reconstruction
wav = signal.lfilter([1], [1, -hp.preemphasis], wav) # de-preemphasis
wav, _ = librosa.effects.trim(wav) # trim
return wav.astype(np.float32)
def synthesis(f0, sp, ap, sr=16000):
y = pw.synthesize(f0.astype(np.float64), sp.astype(np.float64), ap.astype(np.float64), sr, pw.default_frame_period)
return y
def convert_x(x, c, trainer, enc_only, verbose=False):
c_var = Variable(torch.from_numpy(np.array([c]))).cuda()
tensor = torch.from_numpy(np.expand_dims(x, axis=0)).type(torch.FloatTensor)
converted, enc = trainer.test_step(tensor, c_var, enc_only=enc_only, verbose=verbose)
converted = converted.squeeze(axis=0).transpose((1, 0))
enc = enc.squeeze(axis=0).transpose((1, 0))
return converted, enc
def encode_x(x, trainer):
tensor = torch.from_numpy(np.expand_dims(x, axis=0)).type(torch.FloatTensor)
enc = trainer.encoder_test_step(tensor)
enc = enc.squeeze(axis=0).transpose((1, 0))
return enc
def get_trainer(hps_path, model_path, g_mode, enc_mode, clf_path):
HPS = Hps(hps_path)
hps = HPS.get_tuple()
global MIN_LEN
MIN_LEN = MIN_LEN if hps.enc_mode != 'gumbel_t' else hps.seg_len
trainer = Trainer(hps, None, g_mode, enc_mode)
trainer.load_model(model_path, load_model_list=hps.load_model_list, clf_path = clf_path)
return trainer
def asr(fname):
r = sr.Recognizer()
with sr.WavFile(fname) as source:
audio = r.listen(source)
text = r.recognize_google(audio, language='en')
return text
def compare_asr(s_wav, t_wav):
try:
gt = asr(s_wav)
recog = asr(t_wav)
err_result = wer(gt, recog), wer(' '.join([c for c in gt if c != ' ']), ' '.join([c for c in recog if c != ' ']))
except sr.UnknownValueError:
err_result = [1., 1.]
except:
err_result = [-1., -1.]
return err_result
def parse_encodings(encodings):
return [' '.join([str(int(e)) for i, e in enumerate(enc)]) for enc in encodings]
def write_encodings(path, encodings):
with open(path, 'w') as file:
for enc in encodings:
for i, e in enumerate(enc):
file.write(str(int(e)) + (' ' if i < len(enc)-1 else ''))
file.write('\n')
def convert(trainer,
seg_len,
src_speaker_spec,
src_speaker,
tar_speaker,
utt_id,
speaker2id,
result_dir,
enc_only=True,
save=['wav', 'enc']):
# pad spec to minimum len
PADDED = False
if len(src_speaker_spec) < MIN_LEN:
padding = np.zeros((MIN_LEN - src_speaker_spec.shape[0], src_speaker_spec.shape[1]))
src_speaker_spec = np.concatenate((src_speaker_spec, padding), axis=0)
PADDED = True
if len(src_speaker_spec) <= seg_len:
converted_results, encodings = convert_x(src_speaker_spec, speaker2id[tar_speaker], trainer, enc_only=enc_only)
if PADDED:
encodings = encodings[:MIN_LEN//8] # truncate the encoding of zero paddings
else:
converted_results = []
encodings = []
for idx in range(0, len(src_speaker_spec), seg_len):
if idx + (seg_len*2) > len(src_speaker_spec):
spec_frag = src_speaker_spec[idx:-1]
else:
spec_frag = src_speaker_spec[idx:idx+seg_len]
if len(spec_frag) >= seg_len:
converted_x, enc = convert_x(spec_frag, speaker2id[tar_speaker], trainer, enc_only=enc_only)
converted_results.append(converted_x)
encodings.append(enc)
elif idx == 0:
raise RuntimeError('Please check if input is too short!')
converted_results = np.concatenate(converted_results, axis=0)
encodings = np.concatenate(encodings, axis=0)
wav_data = spectrogram2wav(converted_results)
if len(save) != 0:
if 'wav' in save:
wav_path = os.path.join(result_dir, f'{tar_speaker}_{utt_id}.wav')
sf.write(wav_path, wav_data, hp.sr, 'PCM_16')
if 'enc' in save:
enc_path = os.path.join(result_dir, f'{src_speaker}_{utt_id}.txt')
write_encodings(enc_path, encodings)
return wav_path, len(converted_results)
else:
return wav_data, encodings
def encode(src_speaker_spec, trainer, seg_len, s_speaker=None, utt_id=None, result_dir=None, save=True):
if save:
assert result_dir != None
assert s_speaker != None
assert utt_id != None
# pad spec to minimum len
PADDED = False
if len(src_speaker_spec) < MIN_LEN:
padding = np.zeros((MIN_LEN - src_speaker_spec.shape[0], src_speaker_spec.shape[1]))
src_speaker_spec = np.concatenate((src_speaker_spec, padding), axis=0)
PADDED = True
if len(src_speaker_spec) <= seg_len:
encodings = encode_x(src_speaker_spec, trainer)
if PADDED:
encodings = encodings[:MIN_LEN//8] # truncate the encoding of zero paddings
else:
encodings = []
for idx in range(0, len(src_speaker_spec), seg_len):
if idx + (seg_len*2) > len(src_speaker_spec):
spec_frag = src_speaker_spec[idx:-1]
else:
spec_frag = src_speaker_spec[idx:idx+seg_len]
if len(spec_frag) >= seg_len:
enc = encode_x(spec_frag, trainer)
encodings.append(enc)
elif idx == 0:
raise RuntimeError('Please check if input is too short!')
encodings = np.concatenate(encodings, axis=0)
if save:
enc_path = os.path.join(result_dir, f"{s_speaker}_{utt_id}.txt")
write_encodings(enc_path, encodings)
else:
return encodings
def test_from_list(trainer, seg_len, synthesis_list, data_path, speaker2id_path, result_dir, enc_only, flag='test', run_asr=False):
with open(speaker2id_path, 'r') as f_json:
speaker2id = json.load(f_json)
feeds = []
with open(synthesis_list, 'r') as f:
file = f.readlines()
for line in file:
line = line.split('\n')[0].split(' ')
feeds.append({'s_id' : line[0].split('/')[1].split('_')[0],
'utt_id' : line[0].split('/')[1].split('_')[1],
't_id' : line[1], })
print('[Tester] - Number of files to be resynthesize: ', len(feeds))
dir_path = os.path.join(result_dir, f'{flag}/')
os.makedirs(dir_path, exist_ok=True)
err_results = []
with h5py.File(data_path, 'r') as f_h5:
for feed in tqdm(feeds):
conv_audio, n_frames = convert(trainer,
seg_len,
src_speaker_spec=f_h5[f"test/{feed['s_id']}/{feed['utt_id']}/lin"][()],
src_speaker=feed['s_id'],
tar_speaker=feed['t_id'],
utt_id=feed['utt_id'],
speaker2id=speaker2id,
result_dir=dir_path,
enc_only=enc_only,
save=['wav'])
n_frames = len(f_h5[f"test/{feed['s_id']}/{feed['utt_id']}/lin"][()])
if run_asr:
if hp.frame_shift * (n_frames - 1) + hp.frame_length >= 3.0:
orig_audio = spectrogram2wav(f_h5[f"test/{feed['s_id']}/{feed['utt_id']}/lin"][()])
sf.write('orig_audio.wav', orig_audio, hp.sr, 'PCM_16')
err_results.append(compare_asr(s_wav='orig_audio.wav', t_wav=conv_audio))
os.remove(path='orig_audio.wav')
if run_asr:
err_mean = np.mean(err_results, axis=0)
print('WERR: {:.3f} CERR: {:.3f}, computed over {} samples'.format(err_mean[0], err_mean[1], len(err_results)))
def cross_test(trainer, seg_len, data_path, speaker2id_path, result_dir, enc_only, flag):
with h5py.File(data_path, 'r') as f_h5:
with open(speaker2id_path, 'r') as f_json:
speaker2id = json.load(f_json)
if flag == 'test':
source_speakers = sorted(list(f_h5['test'].keys()))
elif flag == 'train':
source_speakers = [s for s in sorted(list(f_h5['train'].keys())) if s[0] == 'S']
target_speakers = [s for s in sorted(list(f_h5['train'].keys())) if s[0] == 'V']
print('[Tester] - Testing on the {}ing set...'.format(flag))
print('[Tester] - Source speakers: %i, Target speakers: %i' % (len(source_speakers), len(target_speakers)))
print('[Tester] - Converting all testing utterances from source speakers to target speakers, this may take a while...')
for src_speaker in tqdm(source_speakers):
for tar_speaker in target_speakers:
assert src_speaker != tar_speaker
dir_path = os.path.join(result_dir, f'{src_speaker}_to_{tar_speaker}')
os.makedirs(dir_path, exist_ok=True)
for utt_id in f_h5[f'test/{src_speaker}']:
src_speaker_spec = f_h5[f'test/{src_speaker}/{utt_id}/lin'][()]
convert(trainer,
seg_len,
src_speaker_spec,
tar_speaker,
utt_id=utt_id,
speaker2id=speaker2id,
result_dir=dir_path,
enc_only=enc_only)
def test_single(trainer, seg_len, speaker2id_path, result_dir, enc_only, s_speaker, t_speaker):
with open(speaker2id_path, 'r') as f_json:
speaker2id = json.load(f_json)
if s_speaker == 'S015':
filename = './data/english/train/unit/S015_0361841101.wav'
elif s_speaker == 'S119':
filename = './data/english/train/unit/S119_1561145062.wav'
elif s_speaker == 'S130':
filename = './data/english/test/S130_3516588097.wav'
elif s_speaker == 'S089':
filename = './data/english/test/S089_1810826781.wav'
elif s_speaker == 'S378':
filename = './data/surprise/test/S378_117437.wav'
else:
raise NotImplementedError('Please modify path manually!')
_, spec = get_spectrograms(filename)
wav_data, encodings = convert(trainer,
seg_len,
src_speaker_spec=spec,
src_speaker=s_speaker,
tar_speaker=t_speaker,
utt_id='',
speaker2id=speaker2id,
result_dir=result_dir,
enc_only=enc_only,
save=[])
sf.write(os.path.join(result_dir, 'result.wav'), wav_data, hp.sr, 'PCM_16')
write_encodings(os.path.join(result_dir, 'result.txt'), encodings)
err_result = compare_asr(filename, os.path.join(result_dir, 'result.wav'))
print('Testing on source speaker {} and target speaker {}, output shape: {}'.format(s_speaker, t_speaker, wav_data.shape))
print('Comparing ASR result - WERR: {:.3f} CERR: {:.3f}'.format(err_result[0], err_result[1]))
def test_encode(trainer, seg_len, test_path, data_path, result_dir, flag='test'):
files = sorted(glob.glob(os.path.join(test_path, '*.wav')))
feeds = []
for line in files:
line = line.split('/')[-1]
feeds.append({'s_id' : line.split('_')[0],
'utt_id' : line.split('_')[1].split('.')[0]})
print('[Tester] - Number of files to encoded: ', len(feeds))
dir_path = os.path.join(result_dir, f'{flag}/')
os.makedirs(dir_path, exist_ok=True)
with h5py.File(data_path, 'r') as f_h5:
for feed in tqdm(feeds):
src_speaker_spec = f_h5[f"test/{feed['s_id']}/{feed['utt_id']}/lin"][()]
encode(src_speaker_spec, trainer, seg_len, s_speaker=feed['s_id'], utt_id=feed['utt_id'], result_dir=dir_path)
def target_classify(trainer, seg_len, synthesis_list, result_dir, flag='test'):
dir_path = os.path.join(result_dir, f'{flag}/')
with open(synthesis_list, 'r') as f:
file = f.readlines()
acc = []
for line in file:
# get wav path
line = line.split('\n')[0].split(' ')
utt_id = line[0].split('/')[1].split('_')[1]
tar_speaker = line[1]
wav_path = os.path.join(dir_path, f'{tar_speaker}_{utt_id}.wav')
# get spectrogram
_, spec = get_spectrograms(wav_path)
# padding spec
if len(spec) < seg_len:
padding = np.zeros((seg_len - spec.shape[0], spec.shape[1]))
spec = np.concatenate((spec, padding), axis=0)
# classification
logits = []
for idx in range(0, len(spec), seg_len):
if idx + (seg_len*2) > len(spec):
spec_frag = spec[idx:-1]
else:
spec_frag = spec[idx:idx+seg_len]
if len(spec_frag) >= seg_len:
x = torch.from_numpy(np.expand_dims(spec_frag[:seg_len, :], axis=0)).type(torch.FloatTensor)
logit = trainer.classify(x)
logits.append(logit)
elif idx == 0:
raise RuntimeError('Please check if input is too short!')
logits = np.concatenate(logits, axis=0)
#logits = np.sum(logits, axis = 0)
for logit in logits:
am = logit.argmax()
if am == 0:
clf_speaker = 'V001'
elif am ==1:
clf_speaker = 'V002'
else:
clf_speaker = 'None'
if clf_speaker == tar_speaker:
acc.append(1)
#print('[info]: {} is classified to {}'.format(wav_path, clf_speaker))
else:
acc.append(0)
#print('[Error]: {} is classified to {}'.format(wav_path, clf_speaker))
print('Classification Acc: {:.3f}'.format(np.sum(acc)/float(len(acc))))
def encode_for_tacotron(target, trainer, seg_len, multi2idx_path, wav_path, result_path):
wavs = sorted(glob.glob(os.path.join(wav_path, '*.wav')))
print('[Converter] - Number of wav files to encoded: ', len(wavs))
names = []
enc_outputs = []
for wav_path in tqdm(wavs):
name = wav_path.split('/')[-1].split('.')[0]
s_id = name.split('_')[0]
u_id = name.split('_')[1]
if s_id != target:
continue
y, sr = librosa.load(wav_path)
d = librosa.get_duration(y=y, sr=sr)
if d > 25:
continue # --> this filter out too long utts, 3523/3533 for V001 and V002 together in the english dataset
_, spec = get_spectrograms(wav_path)
encodings = encode(spec, trainer, seg_len, save=False)
encodings = parse_encodings(encodings)
enc_outputs.append(encodings)
names.append((s_id, u_id))
# build encodings to character mapping
idx = 0
multi2idx = {}
print('[Converter] - Building encoding to symbol mapping...')
for encodings in tqdm(enc_outputs):
for encoding in encodings:
if str(encoding) not in multi2idx:
multi2idx[str(encoding)] = symbols[idx]
idx += 1
print('[Converter] - Number of unique discret units: ', len(multi2idx))
with open(multi2idx_path, 'w') as file:
file.write(json.dumps(multi2idx))
result_path = result_path.replace('target', target)
print('[Converter] - Writing to meta file...')
with open(result_path, 'w') as file:
for i, encodings in enumerate(enc_outputs):
file.write(str(names[i][0]) + '_' + str(names[i][1] + '|'))
for encoding in encodings:
file.write(multi2idx[str(encoding)])
file.write('\n')