-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdebug.py
90 lines (75 loc) · 2.34 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from __future__ import print_function
import torch.optim as optim
import os
import torch
import numpy as np
from darknet import Darknet
from PIL import Image
from utils import image2torch, convert2cpu
cfgfile = 'face4.1re_95.91.cfg'
weightfile = 'face4.1re_95.91.conv.15'
imgpath = 'data/train/images/10002.png'
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
label = torch.zeros(50*5)
if os.path.getsize(labpath):
tmp = torch.from_numpy(np.loadtxt(labpath))
#tmp = torch.from_numpy(read_truths_args(labpath, 8.0/img.width))
#tmp = torch.from_numpy(read_truths(labpath))
tmp = tmp.view(-1)
tsz = tmp.numel()
#print('labpath = %s , tsz = %d' % (labpath, tsz))
if tsz > 50*5:
label = tmp[0:50*5]
elif tsz > 0:
label[0:tsz] = tmp
label = label.view(1, 50*5)
m = Darknet(cfgfile)
region_loss = m.loss
m.load_weights(weightfile)
print('--- bn weight ---')
print(m.models[0][1].weight)
print('--- bn bias ---')
print(m.models[0][1].bias)
print('--- bn running_mean ---')
print(m.models[0][1].running_mean)
print('--- bn running_var ---')
print(m.models[0][1].running_var)
m.train()
m = m.cuda()
optimizer = optim.SGD(m.parameters(), lr=1e-2, momentum=0.9, weight_decay=0.1)
img = Image.open(imgpath)
img = image2torch(img).cuda()
target = label
print('----- img ---------------------')
print(img.data.storage()[0:100])
print('----- target -----------------')
print(target.data.storage()[0:100])
optimizer.zero_grad()
output = m(img)
print('----- output ------------------')
print(output.data.storage()[0:100])
exit()
loss = region_loss(output, target)
print('----- loss --------------------')
print(loss)
save_grad = None
def extract(grad):
global saved_grad
saved_grad = convert2cpu(grad.data)
output.register_hook(extract)
loss.backward()
saved_grad = saved_grad.view(-1)
for i in xrange(saved_grad.size(0)):
if abs(saved_grad[i]) >= 0.001:
print('%d : %f' % (i, saved_grad[i]))
print(m.state_dict().keys())
#print(m.models[0][0].weight.grad.data.storage()[0:100])
#print(m.models[14][0].weight.data.storage()[0:100])
weight = m.models[13][0].weight.data
grad = m.models[13][0].weight.grad.data
mask = torch.abs(grad) >= 0.1
print(weight[mask])
print(grad[mask])
optimizer.step()
weight2 = m.models[13][0].weight.data
print(weight2[mask])