forked from google-research/big_transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_pipeline_tf2_or_jax.py
140 lines (115 loc) · 5.06 KB
/
input_pipeline_tf2_or_jax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_datasets as tfds
import numpy as np
# A workaround to avoid crash because tfds may open to many files.
import resource
low, high = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (high, high))
# Adjust depending on the available RAM.
MAX_IN_MEMORY = 200_000
DATASET_SPLITS = {
'cifar10': {'train': 'train[:98%]', 'test': 'test'},
'cifar100': {'train': 'train[:98%]', 'test': 'test'},
'imagenet2012': {'train': 'train[:99%]', 'test': 'validation'},
}
def get_dataset_info(dataset, split, examples_per_class):
data_builder = tfds.builder(dataset)
original_num_examples = data_builder.info.splits[split].num_examples
num_classes = data_builder.info.features['label'].num_classes
if examples_per_class is not None:
num_examples = examples_per_class * num_classes
else:
num_examples = original_num_examples
return {'original_num_examples': original_num_examples,
'num_examples': num_examples,
'num_classes': num_classes}
def sample_subset(data, num_examples, num_classes,
examples_per_class, examples_per_class_seed):
data = data.batch(min(num_examples, MAX_IN_MEMORY))
data = data.as_numpy_iterator().next()
np.random.seed(examples_per_class_seed)
indices = [idx
for c in range(num_classes)
for idx in np.random.choice(np.where(data['label'] == c)[0],
examples_per_class,
replace=False)]
data = {'image': data['image'][indices],
'label': data['label'][indices]}
data = tf.data.Dataset.zip(
(tf.data.Dataset.from_tensor_slices(data['image']),
tf.data.Dataset.from_tensor_slices(data['label'])))
return data.map(lambda x, y: {'image': x, 'label': y},
tf.data.experimental.AUTOTUNE)
def get_data(dataset, mode,
repeats, batch_size,
resize_size, crop_size,
mixup_alpha,
examples_per_class, examples_per_class_seed,
num_devices,
tfds_manual_dir):
split = DATASET_SPLITS[dataset][mode]
dataset_info = get_dataset_info(dataset, split, examples_per_class)
data_builder = tfds.builder(dataset)
data_builder.download_and_prepare(
download_config=tfds.download.DownloadConfig(manual_dir=tfds_manual_dir))
data = data_builder.as_dataset(
split=split,
decoders={'image': tfds.decode.SkipDecoding()})
decoder = data_builder.info.features['image'].decode_example
if (mode == 'train') and (examples_per_class is not None):
data = sample_subset(data,
dataset_info['original_num_examples'],
dataset_info['num_classes'],
examples_per_class, examples_per_class_seed)
def _pp(data):
im = decoder(data['image'])
if mode == 'train':
im = tf.image.resize(im, [resize_size, resize_size])
im = tf.image.random_crop(im, [crop_size, crop_size, 3])
im = tf.image.flip_left_right(im)
else:
# usage of crop_size here is intentional
im = tf.image.resize(im, [crop_size, crop_size])
im = (im - 127.5) / 127.5
label = tf.one_hot(data['label'], dataset_info['num_classes'])
return {'image': im, 'label': label}
data = data.cache()
data = data.repeat(repeats)
if mode == 'train':
data = data.shuffle(min(dataset_info['num_examples'], MAX_IN_MEMORY))
data = data.map(_pp, tf.data.experimental.AUTOTUNE)
data = data.batch(batch_size, drop_remainder=True)
def _mixup(data):
beta_dist = tfp.distributions.Beta(mixup_alpha, mixup_alpha)
beta = tf.cast(beta_dist.sample([]), tf.float32)
data['image'] = (beta * data['image'] +
(1 - beta) * tf.reverse(data['image'], axis=[0]))
data['label'] = (beta * data['label'] +
(1 - beta) * tf.reverse(data['label'], axis=[0]))
return data
if mixup_alpha is not None and mixup_alpha > 0.0 and mode == 'train':
data = data.map(_mixup, tf.data.experimental.AUTOTUNE)
# Shard data such that it can be distributed accross devices
def _shard(data):
data['image'] = tf.reshape(data['image'],
[num_devices, -1, crop_size, crop_size, 3])
data['label'] = tf.reshape(data['label'],
[num_devices, -1, dataset_info['num_classes']])
return data
if num_devices is not None:
data = data.map(_shard, tf.data.experimental.AUTOTUNE)
return data.prefetch(1)