-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathssvdr_block_update.m
93 lines (83 loc) · 2.11 KB
/
ssvdr_block_update.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [Ur, Sr, V] = ssvdr_block_update(B, r, Up, Sp, V)
%SSVDR_BLOCK_UPDATE Update the estimate of r-truncated SVD.
%
% Based on work of Grammenos et al.: https://arxiv.org/abs/1907.08059
%
% Author: Andreas Grammenos (ag926@cl.cam.ac.uk)
%
% Last touched date: 19/04/2020
%
% License: GPLv3
%
% check if its the initial block
if nargin < 4
Up = NaN;
Sp = NaN;
end
% check if we request vt
if nargin < 5
V = NaN;
end
% check if we return Vt
if ~isnan(V)
ret_vt = 1;
else
ret_vt = 0;
end
% check if we have the first block
if isnan(Up)
if ret_vt == 1
[Ur, Sr, V] = svds(B, r);
else
[Ur, Sr, ~] = svds(B, r);
end
% we do not, process the next block
else
% construct the q_k (projections)
q_k = Up(:, 1:r)'*B;
% reconstruction energy
cur_recon = Up(:, 1:r)*q_k;
% construct the z_k
z_k = B - cur_recon;
% get the (economy) QR of z_k
[s_k, v_k] = qr(z_k, 0);
% now construct the following block matrix as is shown in the
% algorithm in our paper:
%
% | G_k q_k |
% blk_mat = | |
% | zeros(zr, r) v_k |
%
zr = size(v_k, 1);
%zr = min(b, size(v_k, 1));
% grab the previous diagonal eigenvalues, while check if it is a vector
if isvector(Sp)
% expand into a proper singular value matrix
G_k = diag(Sp);
else
% it is already expanded.
G_k = Sp;
end
%
%cc_top = [G_k(1:r, 1:r), q_k(:, :)]; %size(cc_top)
%cc_bot = [zeros(zr, r), v_k]; %size(cc_bot)
%
%k
blk_mat_k = [ G_k(1:r, 1:r), q_k(:, :); zeros(zr, r), v_k ];
% now take the r-svds of that matrix
if ret_vt == 1
[u_k, Sr, vt] = svds(blk_mat_k, 2*r);
else
[u_k, Sr, ~] = svds(blk_mat_k, 2*r);
end
% now update the actual Ur estimation
blk_st = [Up(:, 1:r), s_k];
u_k_sz = size(u_k, 1);
Ur = blk_st*u_k(1:u_k_sz, 1:r);
% check if we require the projected data
if ret_vt == 1
bs = size(B, 2);
V = [V, zeros(size(V, 1), bs); zeros(bs, r), eye(bs)]*vt;
end
end
end