-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_time_order.m
265 lines (215 loc) · 7.34 KB
/
test_time_order.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
% The script is designed to evaluate time order independence, in a sense
% how robust the result is against input permutation. The methods evaluated
% against our F-PCA scheme for this metric are the following:
%
% - PM: https://arxiv.org/pdf/1307.0032.pdf
% - GROUSE: https://arxiv.org/pdf/1702.01005.pdf
% - SPIRIT: https://dl.acm.org/doi/10.5555/1083592.1083674
% - FD: https://arxiv.org/abs/1501.01711.pdf
%
% Based on work of Grammenos et al.: https://arxiv.org/abs/1907.08059
%
% Author: Andreas Grammenos (ag926@cl.cam.ac.uk)
%
% Last touched date: 31/05/2020
%
% License: GPLv3
%
%% Initialisation
clc; clear; close all;
% for reproducibility
rng(300);
% use block error
use_blk_err = 0;
% enable printing
pflag = 1;
% use print figs
fig_print = 1;
% print pdfs
pdf_print = 1;
% print mse in console
print_mse_console = 0;
% target rank (or seed for adaptive)
ranks = [5, 20, 40, 60, 80];
% number of features in each vector
feats = 100; % 1k
% number of columns
T = 10000;
% pick the spectrum range to test against
alphas = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 4];
% synthetic dataset parameters
synth_params.spectrum_type = "pl";
synth_params.lambda = 1;
% the length is the range for testing
alphas_len = size(alphas, 2);
% trials for hypothesis
max_trials = 20;
% SPIRIT Parameters
sp_lambda = .9;
sp_energy = [0.95, 0.98];
% preallocate error arrays for speed
u_mse = zeros(max_trials, alphas_len);
g_mse = zeros(max_trials, alphas_len);
u_s_mse = zeros(max_trials, alphas_len);
g_s_mse = zeros(max_trials, alphas_len);
pm_u_mse = zeros(max_trials, alphas_len);
pm_s_u_mse = zeros(max_trials, alphas_len);
gr_u_mse = zeros(max_trials, alphas_len);
gr_s_u_mse = zeros(max_trials, alphas_len);
sp_u_mse = zeros(max_trials, alphas_len);
sp_s_u_mse = zeros(max_trials, alphas_len);
fd_u_mse = zeros(max_trials, alphas_len);
fd_s_u_mse = zeros(max_trials, alphas_len);
% set the real dataset
params.type = "time-order";
% enable printing
params.pflag = 1;
% print pdfs
params.pdf_print = 1;
% setup the environment
params = setup_vars(params);
%% Run the trials
for i = 1:size(ranks, 2)
% set the rank
r = ranks(i);
fprintf("\n -- Running for rank %d\n", r);
% ---- Run trials -----
for a = 1:alphas_len
% set the alpha
synth_params.alpha = alphas(a);
% generate the synthetic data
Y = synthetic_data_gen(feats, T, synth_params);
% run the svds
[U_n_svds, G_n_svds, ~] = svds(Y, r);
% run f-pca
fpca_off_params.blk_size = 50;
fpca_off_params.adaptive = 0;
[U_n, G_n, ~] = fpca_edge(Y, r, fpca_off_params);
% run pm
[U_n_pm, ~] = mitliag_pm(Y, r);
% run GROUSE
[U_n_gr, ~, ~] = my_grouse(Y, r);
% run FD
[U_n_fd, ~] = fd(Y', r);
U_n_fd = U_n_fd';
% run SPIRIT
clear sp_params;
sp_off_params.adaptive = 0;
sp_off_params.k0 = r;
sp_off_params.use_qr = 1;
[U_n_sp, ~] = SPIRIT(Y', sp_lambda, sp_energy, sp_off_params);
% run for the specified number of trials
for t = 1:max_trials
% generate a random permutation
shuffle_index = randsample(1:T, T);
% get the matrix for that respective permutation
Y_p = Y(:, shuffle_index);
% run f-pca
clear fpca_params;
fpca_params.blk_size = 50;
fpca_params.adaptive = 0;
[U_p, G_p, ~] = fpca_edge(Y, r, fpca_params);
% run pm
[U_pm, ~] = mitliag_pm(Y, r);
% run GROUSE
[U_gr, ~, ~] = my_grouse(Y, r);
% run SPIRIT
clear sp_params;
sp_params.adaptive = 0;
sp_params.k0 = r;
sp_params.use_qr = 1;
[U_sp, ~] = SPIRIT(Y', sp_lambda, sp_energy, sp_params);
% run FD
[U_fd, ~] = fd(Y', r);
U_fd = U_fd';
% calculate the mse errors
u_mse(t, a) = log(immse(abs(U_p), abs(U_n)));
g_mse(t, a) = log(immse(abs(G_p), abs(G_n)));
u_s_mse(t, a) = log(immse(abs(U_p), abs(U_n_svds)));
g_s_mse(t, a) = log(immse(abs(G_p), abs(G_n_svds)));
pm_u_mse(t, a) = log(immse(abs(U_pm), abs(U_n_pm)));
pm_s_u_mse(t, a) = log(immse(abs(U_pm), abs(U_n_svds)));
gr_u_mse(t, a) = log(immse(abs(U_gr), abs(U_n_gr)));
gr_s_u_mse(t, a) = log(immse(abs(U_gr), abs(U_n_svds)));
sp_u_mse(t, a) = log(immse(abs(U_sp), abs(U_n_sp)));
sp_s_u_mse(t, a) = log(immse(abs(U_sp), abs(U_n_svds)));
fd_u_mse(t, a) = log(immse(abs(U_fd), abs(U_n_fd)));
fd_s_u_mse(t, a) = log(immse(abs(U_fd), abs(U_n_svds)));
end
end
% find the means for the alphas
m_u_mse = mean(u_mse);
m_g_mse = mean(g_mse);
m_u_s_mse = mean(u_s_mse);
m_g_s_mse = mean(g_s_mse);
m_pm_u_mse = mean(pm_u_mse);
m_pm_s_u_mse = mean(pm_s_u_mse);
m_gr_u_mse = mean(gr_u_mse);
m_gr_s_u_mse = mean(gr_s_u_mse);
m_sp_u_mse = mean(sp_u_mse);
m_sp_s_u_mse = mean(sp_s_u_mse);
m_fd_u_mse = mean(fd_u_mse);
m_fd_s_u_mse = mean(fd_s_u_mse);
% and the std's
std_u_mse = std(u_mse);
%std_g_mse = std(g_mse);
std_u_s_mse = std(u_s_mse);
%std_g_s_mse = std(g_s_mse);
std_pm_u_mse = std(pm_u_mse);
std_pm_s_u_mse = std(pm_s_u_mse);
std_gr_u_mse = std(gr_u_mse);
std_gr_s_u_mse = std(gr_s_u_mse);
std_sp_u_mse = std(sp_u_mse);
std_sp_s_u_mse = std(sp_s_u_mse);
std_fd_u_mse = std(fd_u_mse);
std_fd_s_u_mse = std(fd_s_u_mse);
% report the errors
% check if we print info in console
if print_mse_console == 1
fprintf("\n ** Number Trials %d", t);
fprintf("\n -- F-PCA MSE for U: %d, G: %d", m_u_mse, m_g_mse);
fprintf("\n -- F-PCA vs SVDS MSE for U: %d, G: %d\n", m_u_s_mse, m_g_s_mse);
fprintf("\n -- PM MSE for U: %d", m_pm_u_mse);
fprintf("\n -- PM vs SVDS MSE for U: %d\n", m_pm_s_u_mse);
fprintf("\n -- GROUSE MSE for U: %d", m_gr_u_mse);
fprintf("\n -- GROUSE vs SVDS for U: %d\n", m_gr_s_u_mse);
fprintf("\n -- SPIRIT MSE for U: %d", m_sp_u_mse);
fprintf("\n -- SPIRIT vs SVDS for U: %d\n", m_sp_s_u_mse);
fprintf("\n -- FD MSE for U: %d", m_fd_u_mse);
fprintf("\n -- FD vs SVDS for U: %d\n", m_fd_s_u_mse);
end
% ---- Plot the results -----
fig = figure;
xt = 1:alphas_len;
hold on;
errorbar(xt, m_u_mse, std_u_mse, "g-+", "LineWidth", 2);
%errorbar(xt, m_g_mse, std_g_mse, "LineWidth", 2);
errorbar(xt, m_u_s_mse, std_u_s_mse, "LineWidth", 2);
%errorbar(xt, m_g_s_mse, std_g_s_mse, "LineWidth", 2);
errorbar(xt, m_pm_u_mse, std_pm_u_mse, "LineWidth", 2);
errorbar(xt, m_pm_s_u_mse, std_pm_s_u_mse, "LineWidth", 2);
errorbar(xt, m_gr_u_mse, std_gr_u_mse, "LineWidth", 2);
errorbar(xt, m_gr_s_u_mse, std_gr_s_u_mse, "LineWidth", 2);
errorbar(xt, m_sp_u_mse, std_sp_u_mse, "LineWidth", 2);
errorbar(xt, m_sp_s_u_mse, std_sp_s_u_mse, "LineWidth", 2);
errorbar(xt, m_fd_u_mse, std_fd_u_mse, "LineWidth", 2);
errorbar(xt, m_fd_s_u_mse, std_fd_s_u_mse, "LineWidth", 2);
hold off;
st = sprintf(['Errors (with bars) for subspaces across a ', ...
'(r=%d, feats=%d, T=%dK)'], r, feats, T/1000);
title(st);
legend("fpca", "fpca_s", "pm", "pm_s", "gr", "gr_s", "sp", "sp_s", ...
"fd", "fd_s");
xticks(xt);
xticklabels(num2cell(alphas));
xlabel("\alpha");
ylabel("errors (log(rmse))");
% generate the specific filename
st = sprintf("time_order_ind_r_%d_d_%d_T_%d_log_rmse", r, feats, T);
% print the figure
print_fig(fig, st, params);
% enlarge the fonts
set(gca, 'FontSize', 12);
fprintf(" -- Finished running for rank %d", r);
% end error reporting, move on to the next r
end