-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathstream.py
executable file
·270 lines (220 loc) · 10.6 KB
/
stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import logging
from appmetrics import reporter, metrics
from input import setup_input_stream
from lib import setup_logging
setup_logging()
log = logging.getLogger(__name__)
log.info("package import START")
import importlib
import jsonpickle
from detection.motion_detector import SimpleMotionDetector
from detection.object_detector_streaming import StreamingTFObjectDetector
from detection.pattern_detector import PatternDetector
from detection.state_managers.door_state_manager import DoorStateManager
from detection.state_managers.motion_state_manager import MotionStateManager
from lib.framelimiter import FrameLimiter
from base_detector import DetectorView
from broker import Broker
from lib.getch import getch
import argparse
import threading
import time
import cv2
from flask import Flask
from flask import Response
from flask import jsonify
from flask import render_template
from flask import request
from lib.fps import FPS
from lib.task_queue import BlockingTaskSingleton, NonBlockingTaskSingleton, BlockingTaskQueue
from flask_classful import route
log.info("package import END")
class StreamDetector():
def __init__(self, config, object_detector: StreamingTFObjectDetector, pattern_detector: PatternDetector):
self.output_video_frame_q = NonBlockingTaskSingleton(metric_prefix='sd_video_frame_q')
self.active_video_feeds = 0
self.config = config
self.od = object_detector
if self.config.pattern_detection_enabled:
self.door_state_manager = DoorStateManager(pattern_detector, pattern_detector.broker_q)
self.motion_state_manager = MotionStateManager(pattern_detector, pattern_detector.broker_q)
self.motion_detector = SimpleMotionDetector(config)
self.stopped = False
def start(self):
log.info("TFObjectDetector init START")
self.od.start()
self.vs = setup_input_stream(self.config)
self.od.wait_for_ready()
log.info("TFObjectDetector init END")
# start a thread that will perform object detection
log.info("detect_objects init..")
self.t = threading.Thread(target=self.detect_objects)
self.t.daemon = True
self.t.start()
def wait_for_completion(self, timeout=None):
self.t.join(timeout=timeout)
return self.t.is_alive()
def stop(self):
self.stopped = True
self.vs.stop()
if self.t.is_alive():
self.t.join()
self.od.stop()
def is_alive(self):
return self.t.is_alive() and self.od.is_alive()
def draw_masks(self, frame):
if self.config.md_mask:
xmin, ymin, xmax, ymax = self.config.md_mask
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (128, 0, 128), 1)
def detect_objects(self):
total = 0
fps = FPS(50, 100)
# loop over frames from the video stream
limiter = FrameLimiter(self.config.md_frame_rate)
while limiter.limit() and not self.vs.stopped and not self.stopped:
frame = self.vs.read()
if frame is not None:
output_frame = frame.copy()
ts = time.time()
if self.config.tf_apply_md:
output_frame, crop, motion_outside = self.motion_detector.detect(output_frame)
if self.config.pattern_detection_enabled:
door_state = self.config.door_state_detector.detect_door_state(frame)
self.door_state_manager.add_state(door_state)
self.motion_state_manager.add_state(motion_outside)
if self.config.door_state_detector_show_detection:
self.config.door_state_detector.show_detection(output_frame, door_state)
if crop is not None:
minX, minY, maxX, maxY = crop
cropped_frame = frame[minY:maxY, minX:maxX]
self.od.add_task((frame, cropped_frame, (minX, minY), ts))
else:
self.od.add_task((frame, frame, (0, 0), ts))
self.draw_masks(output_frame)
fps.count()
if total % self.config.fps_print_frames == 0:
log.info("od=%.2f/md=%.2f/st=%.2f fps" % (self.od.fps.fps, fps.fps, self.vs.fps.fps))
log.debug("total: %d" % total)
total += 1
if self.config.show_fps:
cv2.putText(output_frame,
"od=%.2f/md=%.2f/st=%.2f fps" % (self.od.fps.fps, fps.fps, self.vs.fps.fps),
(10, output_frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 255, 255), 1)
self.output_video_frame_q.enqueue(output_frame)
else:
log.info("frame is NONE")
if self.config.debug_mode:
ch = getch()
if ch == 'q':
break
fps.stop()
def generate(self):
self.active_video_feeds += 1
current_feed_num = self.active_video_feeds
# loop over frames from the output stream
try:
limiter = FrameLimiter(self.config.video_feed_fps)
while limiter.limit():
output_frame = self.output_video_frame_q.read()
# encode the frame in JPEG format
(flag, encodedImage) = cv2.imencode(".jpg", output_frame)
# ensure the frame was successfully encoded
if not flag:
continue
# yield the output frame in the byte format
yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +
bytearray(encodedImage) + b'\r\n')
finally:
self.active_video_feeds -= 1
class StreamDetectorView(DetectorView):
def __init__(self, streaming_detector: StreamDetector):
super().__init__()
self.sd = streaming_detector
self.config = self.sd.config
@route("/")
def index(self):
return render_template("index.html")
@route('/status')
def status(self):
return jsonify ({
'active_video_feeds': self.sd.active_video_feeds,
'od_active_video_feeds': self.sd.od.active_video_feeds,
'appmetrics': metrics.metrics_by_name_list(metrics.metrics())
})
@route('/config')
def apiconfig(self):
super().apiconfig()
self.config.send_mqtt = bool(request.args.get('send_mqtt', self.config.send_mqtt))
self.config.mqtt_heartbeat_secs = int(
request.args.get('mqtt_heartbeat_secs', self.config.mqtt_heartbeat_secs))
self.config.show_fps = bool(request.args.get('show_fps', self.config.show_fps))
self.config.video_feed_fps = int(request.args.get('video_feed_fps', self.config.video_feed_fps))
self.config.md_tval = int(request.args.get('md_tval', self.config.md_tval))
self.config.md_bg_accum_weight = float(request.args.get('md_bg_accum_weight', self.config.md_bg_accum_weight))
self.config.md_show_all_contours = bool(
request.args.get('md_show_all_contours', self.config.md_show_all_contours))
self.config.md_min_cont_area = int(request.args.get('md_min_cont_area', self.config.md_min_cont_area))
self.config.md_frame_rate = int(request.args.get('md_frame_rate', self.config.md_frame_rate))
self.config.md_box_threshold_x = int(request.args.get('md_box_threshold_x', self.config.md_box_threshold_x))
self.config.md_box_threshold_y = int(request.args.get('md_box_threshold_y', self.config.md_box_threshold_y))
self.config.md_reset_bg_model = bool(request.args.get('md_reset_bg_model', self.config.md_reset_bg_model))
return Response(jsonpickle.encode(self.config.__dict__, max_depth=2), mimetype='application/json')
@route("/image")
def image(self):
(flag, encodedImage) = cv2.imencode(".jpg", self.sd.output_video_frame_q.read())
return Response(bytearray(encodedImage),
mimetype='image/jpeg')
@route("/video_feed")
def video_feed(self):
return Response(self.sd.generate(),
mimetype="multipart/x-mixed-replace; boundary=frame")
@route("/od_video_feed")
def od_video_feed(self):
return Response(self.sd.od.generate_output_frames(),
mimetype="multipart/x-mixed-replace; boundary=frame")
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--ip", type=str, required=True,
help="ip address of the device")
ap.add_argument("-o", "--port", type=int, required=True,
help="ephemeral port number of the server (1024 to 65535)")
ap.add_argument("-c", "--config", type=str, required=True,
help="path to the python config file")
args = vars(ap.parse_args())
m = importlib.import_module(args["config"])
config = getattr(m, "Config")()
broker_q = BlockingTaskSingleton(metric_prefix='broker_q')
notify_q = BlockingTaskQueue(config.notifier_queue_size, metric_prefix='notifier_q')
pattern_detector = None
if config.pattern_detection_enabled:
pattern_detector = PatternDetector(broker_q, config.pattern_detection_pattern_steps,
config.pattern_detection_state_history_length,
config.pattern_detection_state_history_length_partial,
config.pattern_detection_interval)
od = StreamingTFObjectDetector(config, broker_q)
sd = StreamDetector(config, od, pattern_detector)
mb = Broker(sd.config, od, pattern_detector, broker_q, notify_q)
log.info("flask init..")
app = Flask(__name__)
def stdout_report(metrics):
log.info(metrics)
reporter.register(stdout_report, reporter.fixed_interval_scheduler(30))
StreamDetectorView.register(app, init_argument=sd, route_base='/')
f = threading.Thread(target=app.run, kwargs={'host': args["ip"], 'port': args["port"], 'debug': False,
'threaded': True, 'use_reloader': False})
f.daemon = True
f.start()
log.info("start reading video input")
sd.start()
while sd.wait_for_completion(1) and od.is_alive() and mb.is_alive() and f.is_alive():
pass
log.info("sd is alive: %s", str(sd.is_alive()))
log.info("od is alive: %s", str(od.is_alive()))
log.info("mb is alive: %s", str(mb.is_alive()))
log.info("f is alive: %s", str(f.is_alive()))
log.info("stopping argos..")
sd.stop()
mb.stop()
if pattern_detector:
pattern_detector.stop()