-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy paththe_model.py
80 lines (67 loc) · 1.88 KB
/
the_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# coding: utf-8
"""
One of our best models
This model achieves 97.2% top-1 accuracy on 2013 CASIA competition data,
better than any previously published results.
"""
from keras.models import Model
from keras.layers import (
Input,
Flatten,
Dense,
ZeroPadding2D,
Conv2D,
Activation,
MaxPooling2D,
BatchNormalization)
from keras.layers.advanced_activations import LeakyReLU
def relu():
return LeakyReLU(alpha=0.01)
def conv_unit(input_tensor, nb_filters, mp=False, dropout=None):
"""
one conv-relu-bn unit
"""
x = ZeroPadding2D()(input_tensor)
x = Conv2D(nb_filters, (3, 3))(x)
x = relu()(x)
x = BatchNormalization(axis=3, momentum=0.66)(x)
if mp:
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
return x
def out_block(input_tensor, nb_classes):
"""
FC output
"""
x = Flatten()(input_tensor)
x = Dense(1024)(x)
x = relu()(x)
x = BatchNormalization(momentum=0.66)(x)
x = Dense(256)(x)
x = relu()(x)
x = BatchNormalization(momentum=0.66)(x)
x = Dense(nb_classes)(x)
x = Activation('softmax')(x)
return x
def model_8(img_size, num_classes):
"""
This is actually model N2B
5 blocks, 14 weight layers (1-2-2-3-3--3)
"""
inputs = Input(shape=(img_size, img_size, 1))
x = ZeroPadding2D()(inputs)
x = Conv2D(64, (3, 3), strides=(2, 2))(x)
x = relu()(x)
x = BatchNormalization(momentum=0.66)(x)
x = conv_unit(x, 128)
x = conv_unit(x, 128, mp=True)
x = conv_unit(x, 256)
x = conv_unit(x, 256, mp=True)
x = conv_unit(x, 384)
x = conv_unit(x, 384)
x = conv_unit(x, 384, mp=True)
x = conv_unit(x, 512)
x = conv_unit(x, 512)
x = conv_unit(x, 512, mp=True)
x = out_block(x, num_classes)
model = Model(inputs=inputs, outputs=x)
return model