-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtutorial.rb
129 lines (84 loc) · 3.54 KB
/
tutorial.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# ported from PyTorch Tutorials
# https://pytorch.org/tutorials/beginner/audio_preprocessing_tutorial.html
# see LICENSE-tutorial.txt
# audio file available at
# https://github.com/pytorch/tutorials/raw/master/_static/img/steam-train-whistle-daniel_simon-converted-from-mp3.wav
require "torch"
require "torchaudio"
require "matplotlib/pyplot"
plt = Matplotlib::Pyplot
filename = "steam-train-whistle-daniel_simon-converted-from-mp3.wav"
waveform, sample_rate = TorchAudio.load(filename)
puts "Shape of waveform: #{waveform.size}"
puts "Sample rate of waveform: #{sample_rate}"
plt.figure
plt.plot(waveform.t.to_a)
plt.savefig("waveform.png")
# ---
specgram = TorchAudio::Transforms::Spectrogram.new.call(waveform)
puts "Shape of spectrogram: #{specgram.size}"
plt.figure
plt.imshow(specgram.log2[0, 0..-1, 0..-1].to_a, cmap: "gray")
plt.savefig("spectrogram.png")
# ---
specgram = TorchAudio::Transforms::MelSpectrogram.new.call(waveform)
puts "Shape of spectrogram: #{specgram.size}"
plt.figure
plt.imshow(specgram.log2[0, 0..-1, 0..-1].to_a, cmap: "gray")
plt.savefig("mel_spectrogram.png")
# ---
puts "Min of waveform: #{waveform.min.item}"
puts "Max of waveform: #{waveform.max.item}"
puts "Mean of waveform: #{waveform.mean.item}"
# ---
transformed = TorchAudio::Transforms::MuLawEncoding.new.call(waveform)
puts "Shape of transformed waveform: #{transformed.size}"
plt.figure
plt.plot(transformed[0, 0..-1].to_a)
plt.savefig("mu_law_encoding.png")
# ---
reconstructed = TorchAudio::Transforms::MuLawDecoding.new.call(transformed)
puts "Shape of recovered waveform: #{reconstructed.size}"
plt.figure
plt.plot(reconstructed[0, 0..-1].to_a)
plt.savefig("mu_law_decoding.png")
# ---
err = ((waveform - reconstructed).abs / waveform.abs).median
puts "Median relative difference between original and MuLaw reconstucted signals: #{(err.item * 100).round(2)}%"
# ---
mu_law_encoding_waveform = TorchAudio::Functional.mu_law_encoding(waveform, 256)
puts "Shape of transformed waveform: #{mu_law_encoding_waveform.size}"
plt.figure
plt.plot(mu_law_encoding_waveform[0, 0..-1].to_a)
plt.savefig("mu_law_encoding_functional.png")
# ---
computed = TorchAudio::Functional.compute_deltas(specgram.contiguous, win_length: 3)
puts "Shape of computed deltas: #{computed.shape}"
plt.figure
plt.imshow(computed.log2[0, 0..-1, 0..-1].detach.to_a, cmap: "gray")
plt.savefig("compute_deltas.png")
# ---
gain_waveform = TorchAudio::Functional.gain(waveform, gain_db: 5.0)
puts "Min of gain_waveform: #{gain_waveform.min.item}"
puts "Max of gain_waveform: #{gain_waveform.max.item}"
puts "Mean of gain_waveform: #{gain_waveform.mean.item}"
dither_waveform = TorchAudio::Functional.dither(waveform)
puts "Min of dither_waveform: #{dither_waveform.min.item}"
puts "Max of dither_waveform: #{dither_waveform.max.item}"
puts "Mean of dither_waveform: #{dither_waveform.mean.item}"
# ---
lowpass_waveform = TorchAudio::Functional.lowpass_biquad(waveform, sample_rate, 3000)
puts "Min of lowpass_waveform: #{lowpass_waveform.min.item}"
puts "Max of lowpass_waveform: #{lowpass_waveform.max.item}"
puts "Mean of lowpass_waveform: #{lowpass_waveform.mean.item}"
plt.figure
plt.plot(lowpass_waveform.t.to_a)
plt.savefig("lowpass_biquad.png")
# ---
highpass_waveform = TorchAudio::Functional.highpass_biquad(waveform, sample_rate, 2000)
puts "Min of highpass_waveform: #{highpass_waveform.min.item}"
puts "Max of highpass_waveform: #{highpass_waveform.max.item}"
puts "Mean of highpass_waveform: #{highpass_waveform.mean.item}"
plt.figure
plt.plot(highpass_waveform.t.to_a)
plt.savefig("highpass_biquad.png")