forked from gringer/bioinfscripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
delta_stats.pl
executable file
·273 lines (249 loc) · 8.58 KB
/
delta_stats.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/perl
# delta_stats.pl -- Calulate descriptive statistics and proportions
# for marker genotypes (assumes simplegt-formatted input file)
# Author: David Eccles (gringer), 2008 <programming@gringer.org>
# modified Oct 2010: genotype proportions, use expected proportions
# rather than observed proportions to reduce impact of missing data.
# modified Nov 2010: add count data output, allele frequency output
use warnings;
use strict;
sub usage {
print(STDERR "usage: /delta_stats.pl < <input.file>\n");
print(STDERR "\nOther Options:\n");
print(STDERR "-help : display this information\n");
print(STDERR "p<string> <int1> <int2> : define population as (<int1> .. <int2>)\n");
print(STDERR "p<string> +<int> : define population as (last+1 .. last+<int>)\n");
print(STDERR "-nofreq : don't show frequencies\n");
print(STDERR "-nonull : don't show missing proportion\n");
print(STDERR "-count : show counts instead of frequencies\n");
print(STDERR "-allelestats : show allele (instead of genotype) statistics\n");
print(STDERR "-csv : output comma-separated values\n");
print(STDERR "\n");
}
sub max {
my ($val1, $val2) = @_;
if($val2 > $val1){
return $val2;
}
else{
return $val1;
}
}
my %indivs = ();
# remove command line arguments (so while(<>) works)
my $lastPop = -1;
my $progname = $0;
my @pops = ();
my $showFreqs = 1; # true
my $showNull = 1; # true
my $showDelta = 1; # true
my $showCounts = 0; # false
my $alleleStats = 0; # false
my $csvFormat = 0; # false
my @fileNames = ();
while (@ARGV){
my $argument = shift(@ARGV);
if(-f $argument){
push(@fileNames, $argument);
printf(STDERR "Found input file '%s'\n", $argument);
} else {
if($argument eq "-help"){
usage();
exit(0);
} elsif ($argument =~ /^p(.*)$/i){
my $popname = $1;
my $popFrom = shift(@ARGV);
my $popTo = "";
if($popFrom =~ /^\+([0-9]+)/){
$popTo = $lastPop + $1;
$popFrom = $lastPop + 1;
$lastPop = $popTo;
} else {
$popTo = shift(@ARGV);
}
if($popFrom.$popTo =~ /^([0-9]+)$/){
# Doing it this way allows additional columns to be
# added to a pre-existing group
if(!defined($indivs{$popname})){
push(@pops,$popname);
$indivs{$popname} = ();
printf(STDERR "Setting up population '%s'", $popname);
} else {
printf(STDERR "Adding to population '%s'", $popname);
}
printf(STDERR " with range (%s .. %s)\n", $popFrom, $popTo);
push (@{$indivs{$popname}}, ($popFrom .. $popTo));
} else {
printf(STDERR "Error: Population ranges for population '%s' (%s, %s) don't make sense\n",
$popname, $popFrom, $popTo);
}
} elsif ($argument =~ /^-count/){
$showCounts = 1;
printf(STDERR "Genotype counts will be displayed\n");
} elsif ($argument =~ /^-nofreq/){
$showFreqs = 0; #false
printf(STDERR "Frequency/count statistics won't be displayed\n");
} elsif ($argument =~ /^-allelestats/){
$alleleStats = 1; #true
printf(STDERR "Calculating allele (rather than genotype) frequencies/counts\n");
} elsif ($argument =~ /^-csv/){
$csvFormat = 1; #true
printf(STDERR "Output will be CSV format\n");
} elsif ($argument =~ /^-nonull/){
$showNull = 0; #false
} else {
print(STDERR "Unknown argument '$argument'");
usage();
exit(1);
}
}
}
@ARGV = @fileNames;
my $nw = '%-0.7f '; #number width float formatting
my $nd = '%-9d '; #number width integer formatting
my $sw = '%-9s '; #number width string formatting
my $mw = '%-17s '; #marker width string formatting
if($csvFormat){
$nw = ',%0.7f';
$nd = ',%d';
$sw = ',"%s"';
$mw = '"%s"';
}
my $ncounts = 0;
# print out Column Titles
if (scalar(@pops) < 2){
print(STDERR "Error: Fewer than two populations have been defined\n");
usage();
exit(1);
}
if (scalar(@pops) > 2){
$showDelta = 0; # false
}
printf($mw, "Marker");
foreach my $pop1 (@pops){
if($showFreqs){
if($alleleStats){
printf($sw, "p(A,$pop1)");
printf($sw, "p(C,$pop1)");
} else {
printf($sw, "p(AA,$pop1)");
printf($sw, "p(AC,$pop1)");
printf($sw, "p(CC,$pop1)");
}
}
if($showNull){
printf($sw, "p(NN,$pop1)");
}
}
if($showDelta){
printf($sw, "delta");
}
print "\n";
my $pAA = 0;
my $pAC = 0;
my $pCC = 0;
my $pNN = 0;
my @popgts = ();
my @linePops = ();
my %gtCounts = ();
my %popgts = ();
while(<>){
if(/^##/){
next;
}
chomp;
my ($marker, $genotypeLine) = split(/\s+/, $_, 2);
printf($mw, $marker);
if(!@linePops){
# splits are slow, so only do this once
@linePops = (0) x scalar(@_ = split(/\s+/, $genotypeLine));
foreach my $pop1 (@pops){
my @popCols = @{$indivs{$pop1}};
@linePops[@popCols] = ($pop1) x scalar(@popCols);
}
}
# replace complementary alleles and numeric alleles
$genotypeLine =~ tr/1234aAcCgGtT/ACCAAACCCCAA/;
# replace non-conforming alleles with N
$genotypeLine =~ s/[^\sAC]/N/g;
# make sure heterozygotes have the correct ordering
$genotypeLine =~ s/CA/AC/g;
%gtCounts = (); # reset count array
foreach my $pop1 (@pops){
# set individual counts to 0
$gtCounts{$pop1}{"AA"} = 0;
$gtCounts{$pop1}{"AC"} = 0;
$gtCounts{$pop1}{"CC"} = 0;
$gtCounts{$pop1}{"NN"} = 0;
}
# spin through line, storing counts for genotypes
# this is the slowest thing in the code, so it should be heavily optimised
my $col = 0;
grep {
($gtCounts{$linePops[$col++]}{$_})++;
} split(/ +/, $genotypeLine);
# now work out frequencies
foreach my $pop1 (@pops){
# retrieve genotype list for populations individuals
my $totalGoodCount = $gtCounts{$pop1}{"AA"} +
$gtCounts{$pop1}{"AC"} + $gtCounts{$pop1}{"CC"};
my $badCount = $gtCounts{$pop1}{"NN"};
if($totalGoodCount){
$pAA = $gtCounts{$pop1}{"AA"} / $totalGoodCount;
$pAC = $gtCounts{$pop1}{"AC"} / $totalGoodCount;
$pCC = $gtCounts{$pop1}{"CC"} / $totalGoodCount;
$pNN = $badCount / ($badCount + $totalGoodCount);
} else {
$pAA = 0; $pAC = 0; $pCC = 0; $pNN = 1;
}
if($showFreqs){
if($showCounts){
if($alleleStats){
# e.g. 10/60/30 -> 80/120
printf($nd,$gtCounts{$pop1}{"AA"} * 2 + $gtCounts{$pop1}{"AC"});
printf($nd,$gtCounts{$pop1}{"CC"} * 2 + $gtCounts{$pop1}{"AC"});
} else {
printf($nd,$gtCounts{$pop1}{"AA"});
printf($nd,$gtCounts{$pop1}{"AC"});
printf($nd,$gtCounts{$pop1}{"CC"});
}
} else {
if($alleleStats){
# e.g. 0.1/0.6/0.3 -> 0.4/0.6
printf($nw, $pAA + ($pAC / 2));
printf($nw, $pCC + ($pAC / 2));
} else {
printf($nw, $pAA);
printf($nw, $pAC);
printf($nw, $pCC);
}
}
}
if($showNull){
if($showCounts){
printf($nd, $badCount);
} else {
printf($nw, $pNN);
}
}
}
if($showDelta){
my $delta = -1;
if(scalar(@pops) == 2){
my $c0AA = $gtCounts{$pops[0]}{"AA"};
my $c0AC = $gtCounts{$pops[0]}{"AC"};
my $c0CC = $gtCounts{$pops[0]}{"CC"};
my $c1AA = $gtCounts{$pops[1]}{"AA"};
my $c1AC = $gtCounts{$pops[1]}{"AC"};
my $c1CC = $gtCounts{$pops[1]}{"CC"};
if((($c0AA + $c0AC + $c0CC) * ($c1AA + $c1AC + $c1CC)) != 0){
# just allele delta for the moment
my $p0A = ($c0AA * 2 + $c0AC) / (2 * ($c0AA + $c0AC + $c0CC));
my $p1A = ($c1AA * 2 + $c1AC) / (2 * ($c1AA + $c1AC + $c1CC));
$delta = abs($p0A - $p1A);
}
}
printf($nw, $delta);
}
print("\n");
}