-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathjee_processData.py
executable file
·543 lines (456 loc) · 18.6 KB
/
jee_processData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import numpy as np
import cPickle
from collections import defaultdict, OrderedDict
import sys, re
import pandas as pd
import random
#thien's version
extra = 5
maximumLen = 70
fetCutoff = 1
def build_data(data_file, data_list):
"""
Loads data.
"""
nodeDict = {'NONE':0}
edgeDict = {'NONE':0}
etypeDict = {'NONE':0}
esubtypeDict = {'NONE':0}
vocab = defaultdict(float)
depRelDict = {'NONE':1}
typeDict = {'NONE':1}
typeOneDict = {'NONE':1}
posDict = {}
chunkDict = {'O':1}
clauseDict = {}
referDict = {'false':1}
titleModifierDict = {'false':1}
possibleNodeDict = {'NONE':1}
nodeFetDict = {'':0}
edgeFetDict = {'':0}
nodeFetCounter = defaultdict(int)
edgeFetCounter = defaultdict(int)
revs = []
corpusCountIns = defaultdict(int)
maxLength = -1
lengthCounter = defaultdict(int)
tooLong = 0
idMap = {}
corpusMap = loadCorpusMap(data_list)
inst = []
entId, edgeId, annId = -1, -1, -1
idid = -1
with open(data_file, 'r') as f:
for line in f:
line = line.strip()
if line:
inst += [line]
if line == '--------Entity_Mention--------': entId = len(inst)
if line == '--------Edge_Features--------': edgeId = len(inst)
if line == '--------Annotation--------': annId = len(inst)
continue
id = inst[0]
docId = id[(id.find('=')+1):]
docId = docId[0:docId.rfind('#')]
if docId not in corpusMap:
print 'cannot find ', docId, ' in corpusMap'
exit()
corpus = corpusMap[docId]
sentence, pos, chunk, clause, posType, grs, ets, ref, title, eligible, nodeFets, entities, edgeFets, eventPos, eventTrigger, eventArgs = parseInst(inst, entId, edgeId, annId)
inst = []
if len(sentence) > maximumLen:
tooLong += 1
continue
if not eventPos and corpus == 'train': continue
entId, annId = -1, -1
for i, trigger in enumerate(eventTrigger):
lookup('trigger', trigger, nodeDict, False)
eventTrigger[i] = nodeDict[trigger]
for arg_pos in eventArgs[i]:
arg_label = eventArgs[i][arg_pos]
lookup('argument', arg_label, edgeDict, False)
eventArgs[i][arg_pos] = edgeDict[arg_label]
for i, entity in enumerate(entities):
etype = entity[4]
lookup('entityType', etype, etypeDict, False)
entities[i][4] = etypeDict[etype]
esubtype = entity[5]
lookup('entitySubType', esubtype, esubtypeDict, False)
entities[i][5] = esubtypeDict[esubtype]
words = set(sentence)
for word in words:
#word = ' '.join(word.split('_'))
vocab[word] += 1
for i, pos_i in enumerate(pos):
lookup('POS', pos_i, posDict, True)
pos[i] = posDict[pos_i]
for i, chunk_i in enumerate(chunk):
lookup('CHUNK', chunk_i, chunkDict, True)
chunk[i] = chunkDict[chunk_i]
for i, clause_i in enumerate(clause):
clauseDict[clause_i] = int(clause_i)
clause[i] = int(clause_i)
for pts in posType:
for pt in pts:
lookup('possibleTriggerType', pt, possibleNodeDict, True)
nposType = []
for pts in posType:
npt = [ possibleNodeDict[pt] for pt in pts ]
nposType += [npt]
posType = nposType
for gs in grs:
for g in gs:
lookup('depRelType', g, depRelDict, True)
nngs = []
for gs in grs:
nng = [ depRelDict[g] for g in gs ]
nngs += [nng]
grs = nngs
oneEts = []
for et in ets: oneEts += [et[0]]
for i, oneEts_i in enumerate(oneEts):
lookup('entityOneTypeSequence', oneEts_i, typeOneDict, True)
oneEts[i] = typeOneDict[oneEts_i]
for et in ets:
for e in et:
lookup('entityTypeSequence', e, typeDict, True)
nets = []
for et in ets:
net = [ typeDict[e] for e in et ]
nets += [net]
ets = nets
for i, ref_i in enumerate(ref):
lookup('REFERENCE', ref_i, referDict, True)
ref[i] = referDict[ref_i]
for i, title_i in enumerate(title):
lookup('TITLE', title_i, titleModifierDict, True)
title[i] = titleModifierDict[title_i]
for nfs in nodeFets:
for nf in nfs:
if not nf: continue
nodeFetCounter[nf] += 1
for eefs in edgeFets:
for wefs in eefs:
for ef in wefs:
if not ef: continue
edgeFetCounter[ef] += 1
if len(sentence) > maxLength:
maxLength = len(sentence)
lengthCounter[len(sentence)] += 1
corpusCountIns[corpus] += 1
idid += 1
idMap[idid] = id
datum = {"id": idid,
"text": sentence,
"pos": pos,
"chunk": chunk,
"clause": clause,
"posType": posType,
"dep": grs,
"typeEntity": ets,
"typeOneEntity": oneEts,
"refer": ref,
"title": title,
"eligible": eligible,
"nodeFets": nodeFets,
"entities": entities,
"edgeFets": edgeFets,
"eventPos": eventPos,
"eventTrigger": eventTrigger,
"eventArgs": eventArgs,
"corpus": corpus}
revs.append(datum)
for mf in nodeFetCounter:
if nodeFetCounter[mf] >= fetCutoff:
nodeFetDict[mf] = len(nodeFetDict)
for mf in edgeFetCounter:
if edgeFetCounter[mf] >= fetCutoff:
edgeFetDict[mf] = len(edgeFetDict)
for rev in revs:
nnodeFets = []
for nfs in rev["nodeFets"]:
nnfs = [ nodeFetDict[nf] for nf in nfs if nf in nodeFetDict ]
nnodeFets += [nnfs]
rev["nodeFets"] = nnodeFets
nedgeFets = []
for eefs in rev["edgeFets"]:
neefs = []
for wefs in eefs:
nwefs = [ edgeFetDict[ef] for ef in wefs if ef in edgeFetDict ]
neefs += [nwefs]
nedgeFets += [neefs]
rev["edgeFets"] = nedgeFets
print 'instances in corpus'
for corpus in corpusCountIns:
print corpus, ' : ', corpusCountIns[corpus]
print '---------------'
print 'length distribution'
for le in lengthCounter:
print le, ' : ', lengthCounter[le]
print '---------------'
print "maximum length of sentences: ", maxLength
print "number of too long: ", tooLong
print '----------------'
print 'total node features: ', len(nodeFetDict)
print 'total edge features: ', len(edgeFetDict)
return idMap, maxLength, revs, vocab, nodeDict, edgeDict, etypeDict, esubtypeDict, depRelDict, typeDict, typeOneDict, posDict, chunkDict, clauseDict, referDict, titleModifierDict, possibleNodeDict, nodeFetDict, edgeFetDict
def lookup(mess, key, gdict, addOne):
if key not in gdict:
nk = len(gdict)
if addOne: nk += 1
gdict[key] = nk
if mess: print mess, ': ', key, ' --> id = ', gdict[key]
def loadCorpusMap(data_list):
print 'loading corpusMap ...'
res = {}
for dl in data_list:
with open(data_list[dl], 'r') as f:
for line in f:
line = line.strip()
if not line: continue
res[line] = dl
print 'loaded: ', len(res), ' files'
return res
def parseInst(inst, entId, edgeId, annId):
sentence, pos, chunk, clause, posType, grs, ets, ref, title, eligible, nodeFets = [], [], [], [], [], [], [], [], [], [], []
for line in inst[1:entId-1]:
tokens = line.split('\t')
if len(tokens) != 16:
print 'not have 16 elements: ', line
exit()
sentence += [tokens[1]]
pos += [tokens[3]]
chunk += [tokens[4]]
clause += [tokens[6]]
posType += [tokens[7].split()]
grs += [tokens[10].split()]
#ets += [tokens[11].split()]
ets += [[tokens[11].split()[0]]]
ref += [tokens[12]]
title += [tokens[13]]
eligible += [int(tokens[14])]
nodeFets += [tokens[15].split()]
psentLen = len(sentence)
entities = []
for line in inst[entId:edgeId-1]:
mentions = line.split('\t')
if len(mentions) != 7 and len(mentions) != 8:
print 'not 7 or 8 elements'
exit()
entities += [[int(mentions[1]), int(mentions[2]), int(mentions[3]), int(mentions[4]), mentions[5], mentions[6]]]
pnumEntities = len(entities)
edgeFets = []
for lid in range(pnumEntities):
leid = edgeId + lid*(1+psentLen)
if int(inst[leid]) != lid:
print 'wrong entity id: ', leid, inst[leid]
exit()
oneWordEdgeFets = []
for sid in range(1, 1+psentLen):
lsid = leid + sid
edgeEls = inst[lsid].split('\t')
if len(edgeEls) != 2 or int(edgeEls[0]) != (sid-1):
print 'wrong token id: ', lsid, inst[lsid]
exit()
oneWordEdgeFets += [edgeEls[1].split()]
edgeFets += [oneWordEdgeFets]
if (edgeId + pnumEntities*(1+psentLen)) != (annId-1):
print 'wrong positions for annotation and edge features: ', edgeId + pnumEntities*(1+psentLen), annId-1
exit()
eventPos, eventTrigger, eventArgs = [], [], []
for line in inst[annId:]:
event = line.split('\t')
eventPos += [int(event[0])]
eventTrigger += [event[1]]
argm = {}
for i in range(1,(len(event)/2)):
argm[int(event[2*i])] = event[2*i+1]
argm_sorted = sorted(argm)
ars = OrderedDict()
for eid in argm_sorted:
ars[eid] = argm[eid]
eventArgs += [ars]
return sentence, pos, chunk, clause, posType, grs, ets, ref, title, eligible, nodeFets, entities, edgeFets, eventPos, eventTrigger, eventArgs
def get_W(word_vecs, k=300):
"""
Get word matrix. W[i] is the vector for word indexed by i
"""
vocab_size = len(word_vecs)
word_idx_map = dict()
W = np.zeros(shape=(vocab_size+1, k))
W[0] = np.zeros(k)
i = 1
for word in word_vecs:
W[i] = word_vecs[word]
word_idx_map[word] = i
i += 1
return W, word_idx_map
def load_bin_vec(fname, vocab):
"""
Loads 300x1 word vecs from Google (Mikolov) word2vec
"""
word_vecs = {}
dim = 0
with open(fname, "rb") as f:
header = f.readline()
vocab_size, layer1_size = map(int, header.split())
binary_len = np.dtype('float32').itemsize * layer1_size
for line in xrange(vocab_size):
word = []
while True:
ch = f.read(1)
if ch == ' ':
word = ''.join(word)
break
if ch != '\n':
word.append(ch)
if word in vocab:
word_vecs[word] = np.fromstring(f.read(binary_len), dtype='float32')
dim = word_vecs[word].shape[0]
else:
f.read(binary_len)
print 'dim: ', dim
return dim, word_vecs
def load_text_vec(fname, vocab):
word_vecs = {}
count = 0
dim = 0
with open(fname, 'r') as f:
for line in f:
count += 1
line = line.strip()
if count == 1:
if len(line.split()) < 10:
dim = int(line.split()[1])
print 'dim: ', dim
continue
else:
dim = len(line.split()) - 1
print 'dim: ', dim
word = line.split()[0]
emStr = line[(line.find(' ')+1):]
if word in vocab:
word_vecs[word] = np.fromstring(emStr, dtype='float32', sep=' ')
if word_vecs[word].shape[0] != dim:
print 'mismatch dimensions: ', dim, word_vecs[word].shape[0]
exit()
print 'loaded ', len(word_vecs), ' words in word embeddings'
return dim, word_vecs
def add_unknown_words(word_vecs, vocab, min_df=1, k=300):
"""
For words that occur in at least min_df documents, create a separate word vector.
0.25 is chosen so the unknown vectors have (approximately) same variance as pre-trained ones
"""
for word in vocab:
if word not in word_vecs and vocab[word] >= min_df:
word_vecs[word] = np.random.uniform(-0.25,0.25,k)
def loadEventEntityType(file, nodeDict):
res = {}
with open(file, 'r') as f:
for line in f:
line = line.strip()
els = line.split('\t')
ev = els[0]
if ev not in nodeDict:
print 'cannot find event type: ', ev, ' in nodeDict'
exit()
res[nodeDict[ev]] = els[1:]
return res
if __name__=="__main__":
np.random.seed(3435)
random.seed(3435)
embType = sys.argv[1]
w2v_file = sys.argv[2]
data_file = sys.argv[3]
srcDir = sys.argv[4]
eventEntityTypeFile = sys.argv[5]
dataCorpus = ["train", "valid", "test"]
data_list = {}
for d in dataCorpus: data_list[d] = srcDir + "/" + d + ".txt"
print "loading data...\n"
idMap, maxLength, revs, vocab, nodeDict, edgeDict, etypeDict, esubtypeDict, depRelDict, typeDict, typeOneDict, posDict, chunkDict, clauseDict, referDict, titleModifierDict, possibleNodeDict, nodeFetDict, edgeFetDict = build_data(data_file, data_list)
eventEntityType = loadEventEntityType(eventEntityTypeFile, nodeDict)
#print "max distance between entities: " + str(maxDist)
print "data loaded!"
print "vocab size: " + str(len(vocab))
print "loading word embeddings...",
dimEmb = 300
if embType == 'word2vec':
dimEmb, w2v = load_bin_vec(w2v_file, vocab)
else:
dimEmb, w2v = load_text_vec(w2v_file, vocab)
print "word embeddings loaded!"
print "num words already in word embeddings: " + str(len(w2v))
add_unknown_words(w2v, vocab, 1, dimEmb)
W1, word_idx_map = get_W(w2v, dimEmb)
rand_vecs = {}
add_unknown_words(rand_vecs, vocab, 1, dimEmb)
W2, _ = get_W(rand_vecs, dimEmb)
dictionaries = {}
dictionaries['word'] = word_idx_map
dictionaries['nodeLabel'] = nodeDict
dictionaries['edgeLabel'] = edgeDict
dictionaries['etype'] = etypeDict
dictionaries['esubtype'] = esubtypeDict
dictionaries['dep'] = depRelDict
dictionaries['typeEntity'] = typeDict
dictionaries['typeOneEntity'] = typeOneDict
dictionaries['pos'] = posDict
dictionaries['chunk'] = chunkDict
dictionaries['clause'] = clauseDict
dictionaries['refer'] = referDict
dictionaries['title'] = titleModifierDict
dictionaries['possibleNode'] = possibleNodeDict
dictionaries['nodeFetDict'] = nodeFetDict
dictionaries['edgeFetDict'] = edgeFetDict
embeddings = {}
dist_size = 2*maxLength - 1
dist_dim = 50
D1 = np.random.uniform(-0.25,0.25,(dist_size+1,dist_dim))
D2 = np.random.uniform(-0.25,0.25,(dist_size+1,dist_dim))
D3 = np.random.uniform(-0.25,0.25,(dist_size+1,dist_dim))
D1[0] = np.zeros(dist_dim)
D2[0] = np.zeros(dist_dim)
D3[0] = np.zeros(dist_dim)
type_dim = 50
TYPE = np.random.uniform(-0.25,0.25,(len(typeOneDict)+1,type_dim))
TYPE[0] = np.zeros(type_dim)
pos_dim = 50
POS = np.random.uniform(-0.25,0.25,(len(posDict)+1,pos_dim))
POS[0] = np.zeros(pos_dim)
chunk_dim = 50
CHUNK = np.random.uniform(-0.25,0.25,(len(chunkDict)+1,chunk_dim))
CHUNK[0] = np.zeros(chunk_dim)
clause_dim = 50
CLAUSE = np.random.uniform(-0.25,0.25,(len(clauseDict)+1,clause_dim))
CLAUSE[0] = np.zeros(clause_dim)
refer_dim = 50
REFER = np.random.uniform(-0.25,0.25,(2+1,refer_dim))
REFER[0] = np.zeros(refer_dim)
title_dim = 50
TITLE = np.random.uniform(-0.25,0.25,(2+1,title_dim))
TITLE[0] = np.zeros(title_dim)
trigger_dim = 50
TRIGGER = np.random.uniform(-0.25,0.25,(len(nodeDict)+1,trigger_dim))
TRIGGER[0] = np.zeros(trigger_dim)
arg_dim = 50
ARG = np.random.uniform(-0.25,0.25,(len(edgeDict)+1,arg_dim))
ARG[0] = np.zeros(arg_dim)
embeddings['word'] = W1
embeddings['randomWord'] = W2
embeddings['dist1'] = D1
embeddings['dist2'] = D2
embeddings['dist3'] = D3
embeddings['typeOneEntity'] = TYPE
embeddings['pos'] = POS
embeddings['chunk'] = CHUNK
embeddings['clause'] = CLAUSE
embeddings['refer'] = REFER
embeddings['title'] = TITLE
embeddings['trigger'] = TRIGGER
embeddings['arg'] = ARG
for di in dictionaries:
print 'size of ', di, ': ', len(dictionaries[di])
print 'dumping ...'
cPickle.dump([revs, embeddings, dictionaries, eventEntityType, idMap], open('cut_' + str(fetCutoff) + '.' + embType + "_jointEE.pkl", "wb"))
print "dataset created!"