-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_gpu.py
176 lines (146 loc) · 5.43 KB
/
single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision.models import resnet34
from torchvision.transforms import transforms
from torchvision.datasets import CIFAR10
import torch.optim as optim
from torch import Tensor
from typing import Iterator, Tuple
import torchmetrics
def prepare_const() -> dict:
"""Data and model directory + Training hyperparameters"""
data_root = Path("data")
trained_models = Path("trained_models")
if not data_root.exists():
data_root.mkdir()
if not trained_models.exists():
trained_models.mkdir()
const = dict(
data_root=data_root,
trained_models=trained_models,
total_epochs=15,
batch_size=128,
lr=0.1, # learning rate
momentum=0.9,
lr_step_size=5,
save_every=3,
)
return const
def cifar_model() -> nn.Module:
model = resnet34(num_classes=10)
model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
model.maxpool = nn.Identity()
return model
def cifar_dataset(data_root: Path) -> Tuple[Dataset, Dataset]:
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=(0.49139968, 0.48215827, 0.44653124),
std=(0.24703233, 0.24348505, 0.26158768),
),
]
)
trainset = CIFAR10(root=data_root, train=True, transform=transform, download=True)
testset = CIFAR10(root=data_root, train=False, transform=transform, download=True)
return trainset, testset
def cifar_dataloader_single(
trainset: Dataset, testset: Dataset, bs: int
) -> Tuple[DataLoader, DataLoader]:
trainloader = DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=8)
testloader = DataLoader(testset, batch_size=bs, shuffle=False, num_workers=8)
return trainloader, testloader
class TrainerSingle:
def __init__(
self,
gpu_id: int,
model: nn.Module,
trainloader: DataLoader,
testloader: DataLoader,
):
self.gpu_id = gpu_id
self.const = prepare_const()
self.model = model.to(self.gpu_id)
self.trainloader = trainloader
self.testloader = testloader
self.criterion = nn.CrossEntropyLoss()
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.const["lr"],
momentum=self.const["momentum"],
)
self.lr_scheduler = optim.lr_scheduler.StepLR(
self.optimizer, self.const["lr_step_size"]
)
self.train_acc = torchmetrics.Accuracy(
task="multiclass", num_classes=10, average="micro"
).to(self.gpu_id)
self.valid_acc = torchmetrics.Accuracy(
task="multiclass", num_classes=10, average="micro"
).to(self.gpu_id)
def _run_batch(self, src: Tensor, tgt: Tensor) -> float:
self.optimizer.zero_grad()
out = self.model(src)
loss = self.criterion(out, tgt)
loss.backward()
self.optimizer.step()
self.train_acc.update(out, tgt)
return loss.item()
def _run_epoch(self, epoch: int):
loss = 0.0
for src, tgt in self.trainloader:
src = src.to(self.gpu_id)
tgt = tgt.to(self.gpu_id)
loss_batch = self._run_batch(src, tgt)
loss += loss_batch
self.lr_scheduler.step()
print(
f"{'-' * 90}\n[GPU{self.gpu_id}] Epoch {epoch:2d} | Batchsize: {self.const['batch_size']} | Steps: {len(self.trainloader)} | LR: {self.optimizer.param_groups[0]['lr']:.4f} | Loss: {loss / len(self.trainloader):.4f} | Acc: {100 * self.train_acc.compute().item():.2f}%",
flush=True,
)
self.train_acc.reset()
def _save_checkpoint(self, epoch: int):
ckp = self.model.state_dict()
model_path = self.const["trained_models"] / f"CIFAR10_single_epoch{epoch}.pt"
torch.save(ckp, model_path)
def train(self, max_epochs: int):
self.model.train()
for epoch in range(max_epochs):
self._run_epoch(epoch)
if epoch % self.const["save_every"] == 0:
self._save_checkpoint(epoch)
# save last epoch
self._save_checkpoint(max_epochs - 1)
def test(self, final_model_path: str):
self.model.load_state_dict(torch.load(final_model_path))
self.model.eval()
with torch.no_grad():
for src, tgt in self.testloader:
src = src.to(self.gpu_id)
tgt = tgt.to(self.gpu_id)
out = self.model(src)
self.valid_acc.update(out, tgt)
print(
f"[GPU{self.gpu_id}] Test Acc: {100 * self.valid_acc.compute().item():.4f}%"
)
def main_single(gpu_id: int, final_model_path: str):
const = prepare_const()
train_dataset, test_dataset = cifar_dataset(const["data_root"])
train_dataloader, test_dataloader = cifar_dataloader_single(
train_dataset, test_dataset, const["batch_size"]
)
model = cifar_model()
trainer = TrainerSingle(
gpu_id=gpu_id,
model=model,
trainloader=train_dataloader,
testloader=test_dataloader,
)
trainer.train(const["total_epochs"])
trainer.test(final_model_path)
if __name__ == "__main__":
gpu_id = 0
final_model_path = Path("./trained_models/CIFAR10_single_epoch14.pt")
main_single(gpu_id, final_model_path)