-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
39 lines (27 loc) · 1.34 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
import pandas as pd
path_weights = 'weights'
path_click_project = '/home/ahabis/1-Click_project'
path_pannuke = '/home/ahabis/sshfs/pannuke'
path_split = '/home/ahabis/1-Click_project/split_train_val_test'
path_gt = os.path.join(path_pannuke, 'gt')
path_contour_gt = os.path.join(path_pannuke, 'contour_gt')
path_binary_gt = os.path.join(path_pannuke, 'binary_gt')
path_fold1 = os.path.join(path_pannuke, 'fold_1')
path_fold2 = os.path.join(path_pannuke, 'fold_2')
path_fold3 = os.path.join(path_pannuke, 'fold_3')
path_mask_fold1 = os.path.join(path_fold1, 'masks/masks.npy')
path_mask_fold2 = os.path.join(path_fold2, 'masks/masks.npy')
path_mask_fold3 = os.path.join(path_fold3, 'masks/masks.npy')
path_image_fold1 = os.path.join(path_fold1, 'images/images.npy')
path_image_fold2 = os.path.join(path_fold2, 'images/images.npy')
path_image_fold3 = os.path.join(path_fold3, 'images/images.npy')
path_images = os.path.join(path_pannuke, 'images')
df_train = pd.read_csv(os.path.join(path_split, 'train_df.csv'), index_col = 0)
df_test = pd.read_csv(os.path.join(path_split, 'test_df.csv'), index_col = 0)
df_val = pd.read_csv(os.path.join(path_split, 'val_df.csv'), index_col = 0)
###################### Training parameters ###########################
parameters = {}
parameters['dim'] = 256
parameters['batch_size'] = 32
parameters['lr'] = 1e-4