-
Notifications
You must be signed in to change notification settings - Fork 0
/
integers.tex
140 lines (116 loc) · 5.56 KB
/
integers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
\documentclass{article}
\begin{document}
\textbf{Divisibility facts}
\begin{enumerate}
\item Prove that for any integers $ a, b, ab = 0 \Rightarrow a = 0 \lor b = 0 $
\begin{enumerate}
\item Suppose $ ab = 0 $ for some integers a, b
\item Suppose $ a \neq 0. $ Then, there exists an integer $ a^{-1} $ such that $aa^{-1} = 1 $
\item Then, $a^{-1} a b = b = 0 $
\item Similarly, $ b \neq 0 \Rightarrow a = 0 $. Proved.
\end{enumerate}
\item Prove that if x,y are positive, then $ x \mid y \Rightarrow x \leq y $
\begin{enumerate}
\item By definition, there exists integer m such that mx = y
\item Since y is positive, m and x are either both negative or both positive.
\item Since x is positive, m must be positive
\item $ m \geq 1 $
\item Multiplying by x on both sides, $ mx \geq x $
\item Since mx = y, $ mx = y \geq x $
\end{enumerate}
\item Prove that if x, y are negative, then $ x \mid y \Rightarrow y \leq x $
\item If n divides 1, $ n = \pm 1 $
\begin{enumerate}
\item Since n divides 1, xn = 1 for some integer x
\item Either both x and n are positive, or both are negative.
\item Suppose both are positive. Then, $ 0 \leq n $ and by previous result, $ n \leq 1 $
\item Thus, n must be 1
\item Suppose both x and n are negative. Then, $ (-x)(-n) = 1 $. By preceding
deduction, -n = 1
\item This means n = -1
\item Thus, $ n = \pm 1 $
\end{enumerate}
\item For any nonzero integer x, if d divides x, then $ -|x| \leq d \leq |x| $
\begin{enumerate}
\item Suppose x is positive.
\item If d is positive, then $ -|x| < 0 \leq d \leq |x| $
\\ Hence, $ -|x| \leq d \leq |x| $
\item If d is negative, then -d is positive and also divides x, implying that $ -|x| \leq -d \leq |x| $
\\ Hence, $ -|x| \leq d \leq |x| $
\item Suppose x is negative.
\item If d is negative, then $ x = -|x| \leq d < 0 < |x| $
\item Hence, $ -|x| leq d \leq |x| $
\item If d is positive, then -d is negative and also divides x, implying that $
-|x| \leq -d \leq |x| $
\\ Hence, $ -|x| \leq d \leq |x| $
\end{enumerate}
\item For any nonzero integer x, integer d divides x iff -d divides x
\begin{enumerate}
\item Suppose d divides x. i.e. x = md, for some integer m
\item Then, x = (-d)*(-m). Thus, -d divides x
\item The same logic can be applied in the converse direction.
\end{enumerate}
\item For any nonzero integer x, its set of divisors is finite.
\item For the integer 0, the set of divisors is countably infinite.
\item Every non zero integer x has at least 1 positive divisor: 1
\item When we add a set of $k$ integers are added, the sum is odd $\iff$ there
is an odd number of odd integers in the set.
\begin{enumerate}
\item To prove odd number of odd integers $\Rightarrow$ odd sum, note that
adding any number of even integers gives an even sum, and adding odd number of odd
integers gives an odd sum, and adding a single odd integer with any number of
even integers gives an odd sum.
\item To prove odd sum $\Rightarrow$ odd number of integers, note that there
must be at least 1 odd integer in the set. Then, show that the number of odd
integers cannot be even.
\end{enumerate}
\end{enumerate}
\textbf{Greatest common divisor facts}
\begin{enumerate}
\item For any 2 integers x and y, their gcd is a positive integer
\begin{enumerate}
\item The proof stems from fact that any integer has at least 1 positive divisor (namely, the integer 1).
\item Hence, if there are no divisors > 1, 1 will be the greatest common divisor
\end{enumerate}
\item For any integers x, y, we know there exists unique q and r, such that x = qy + r
\\ In general, it is not true that if a is a common divisor of x and r, then a divides y
\\ For example, 6804 = 7(930) + 294. Then, 42 is common divisor of (6804, 294) but does not divide 930
\item k is a common divisor of integers a, b iff $ k \mid gcd(a, b) $
\begin{enumerate}
\item We know from lecture that if k is a common divisor, then $ k \mid gcd(a,b) $
\item If $ k \mid gcd(a, b) $, then k divides a and b, by transitivity of divisibility
\end{enumerate}
\item Show if c divides x, y and z, then c divides gcd(x, y) and z
\begin{enumerate}
\item If c divides x and y, then c divides gcd(x, y). This was proved in lecture
\end{enumerate}
\item Show that $ gcd(x, y, z) \leq gcd(gcd(x,y), z) $
\begin{enumerate}
\item Let d = gcd(x, y, z)
\item Since d divides x and y, then by previous result, it divides gcd(x, y)
\item Since d divides gcd(x, y) and z, then d divides gcd(gcd(x,y), z) [By the same result]
\item We know d are gcd(gcd(x, y), z) are both positive
\item Hence, $ d \mid gcd(gcd(x,y), z) \Rightarrow d = gcd(x, y, z) \leq gcd(gcd(x,y), z) $
\end{enumerate}
\item Show that $ gcd(gcd(x, y), z) \leq gcd(x, y, z) $
\begin{enumerate}
\item We will show that gcd(gcd(x, y), z) is a positive divisor of x, y and z
\item We already know gcd(gcd(x, y), z) is positive and divides z
\item gcd(gcd(x, y, z)) divides gcd(x, y) and since gcd(x, y) divides both x and
y, then by transitivity of divisibility, gcd(gcd(x, y), z) divides x and y
\item Hence, gcd(gcd(x, y), z) is a positive divisor of x, y and z
\item By definition of gcd, $ gcd(gcd(x, y), z) \leq gcd(x, y, z) $
\end{enumerate}
\item $ gcd(gcd(x, y), z) = gcd(x, y, z) $
\item If gcd(a, b) = 1, then $ a \mid bc \Rightarrow a \mid c $
\begin{enumerate}
\item Suppose ak = bc, for some integer k
\item We know there exist integers x, y such that ax + by = 1
\item Multiplying both sides by c, cax + cby = c
\item Simplifying, cax + aky = c = a(cx + ay)
\item Thus, $ a \mid c $ as $ cx + ay $ is an integer
\end{enumerate}
\item If a, b are relatively prime integers, then there is no common prime
integer in the prime factorisation of a and b
\end{enumerate}
\end{document}