The OHIF Viewer's public demo page, available at https://viewer.ohif.org/, uses publicly anonymized demo datasets. These datasets were mostly obtained from the NIH NCI Imaging Data Commons and NIH NCI TCIA. Before listing the datasets, we would like to extend a special thank you to all groups who have made their datasets publicly available. Without them, we would not have been able to create this demo page.
Please find below the list of datasets used on the demo page, along with their respective citations.
- Fedorov, A., Longabaugh, W.J., Pot, D., Clunie, D.A., Pieper, S., Aerts, H.J., Homeyer, A., Lewis, R., Akbarzadeh, A., Bontempi, D. and Clifford, W., 2021. NCI imaging data commons. Cancer research, 81(16), p.4188.
- Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7
Below you can find the StudyInstanceUID of the studies that are used in the demo page along with their citations.
Segmentation of Vestibular Schwannoma from Magnetic Resonance Imaging: An Open Annotated Dataset and Baseline Algorithm (Vestibular-Schwannoma-SEG)
-
Shapey, J., Kujawa, A., Dorent, R., Wang, G., Bisdas, S., Dimitriadis, A., Grishchuck, D., Paddick, I., Kitchen, N., Bradford, R., Saeed, S., Ourselin, S., & Vercauteren, T. (2021). Segmentation of Vestibular Schwannoma from Magnetic Resonance Imaging: An Open Annotated Dataset and Baseline Algorithm [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.9YTJ-5Q73
-
Shapey, J., Kujawa, A., Dorent, R., Wang, G., Dimitriadis, A., Grishchuk, D., Paddick, I., Kitchen, N., Bradford, R., Saeed, S. R., Bisdas, S., Ourselin, S., & Vercauteren, T. (2021). Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. In Scientific Data (Vol. 8, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41597-021-01064-w
ACRIN-NSCLC-FDG-PET (ACRIN 6668)
-
Kinahan, P., Muzi, M., Bialecki, B., Herman, B., & Coombs, L. (2019). Data from the ACRIN 6668 Trial NSCLC-FDG-PET (Version 2) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/tcia.2019.30ilqfcl
-
Machtay, M., Duan, F., Siegel, B. A., Snyder, B. S., Gorelick, J. J., Reddin, J. S., Munden, R., Johnson, D. W., Wilf, L. H., DeNittis, A., Sherwin, N., Cho, K. H., Kim, S., Videtic, G., Neumann, D. R., Komaki, R., Macapinlac, H., Bradley, J. D., & Alavi, A. (2013). Prediction of Survival by [18F]Fluorodeoxyglucose Positron Emission Tomography in Patients With Locally Advanced Non–Small-Cell Lung Cancer Undergoing Definitive Chemoradiation Therapy: Results of the ACRIN 6668/RTOG 0235 Trial. In Journal of Clinical Oncology (Vol. 31, Issue 30, pp. 3823–3830). American Society of Clinical Oncology (ASCO). https://doi.org/10.1200/jco.2012.47.5947
The Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM)
- Scarpace, L., Mikkelsen, T., Cha, S., Rao, S., Tekchandani, S., Gutman, D., Saltz, J. H., Erickson, B. J., Pedano, N., Flanders, A. E., Barnholtz-Sloan, J., Ostrom, Q., Barboriak, D., & Pierce, L. J. (2016). The Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM) (Version 4) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9
Abdominal or pelvic enhanced CT images within 10 days before surgery of 230 patients with stage II colorectal cancer (StageII-Colorectal-CT)
-
Tong T., Li M. (2022) Abdominal or pelvic enhanced CT images within 10 days before surgery of 230 patients with stage II colorectal cancer (StageII-Colorectal-CT) [Dataset]. The Cancer Imaging Archive. DOI: https://doi.org/10.7937/p5k5-tg43
-
Li, M., Gong, J., Bao, Y., Huang, D., Peng, J., & Tong, T. (2022). Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes. In International Journal of Cancer. Wiley. https://doi.org/10.1002/ijc.34053
The Cancer Genome Atlas Sarcoma Collection (TCGA-SARC)
- Roche, C., Bonaccio, E., & Filippini, J. (2016). The Cancer Genome Atlas Sarcoma Collection (TCGA-SARC) (Version 3) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.CX6YLSUX
BREAST-DIAGNOSIS
- Bloch, B. Nicolas, Jain, Ashali, & Jaffe, C. Carl. (2015). BREAST-DIAGNOSIS [Data set]. The Cancer Imaging Archive. http://doi.org/10.7937/K9/TCIA.2015.SDNRQXXR
Multimodality annotated HCC cases with and without advanced imaging segmentation (HCC-TACE-Seg)
-
Moawad, A. W., Fuentes, D., Morshid, A., Khalaf, A. M., Elmohr, M. M., Abusaif, A., Hazle, J. D., Kaseb, A. O., Hassan, M., Mahvash, A., Szklaruk, J., Qayyom, A., & Elsayes, K. (2021). Multimodality annotated HCC cases with and without advanced imaging segmentation [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.5FNA-0924
-
Morshid, A., Elsayes, K. M., Khalaf, A. M., Elmohr, M. M., Yu, J., Kaseb, A. O., Hassan, M., Mahvash, A., Wang, Z., Hazle, J. D., & Fuentes, D. (2019). A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization. Radiology: Artificial Intelligence, 1(5), e180021. https://doi.org/10.1148/ryai.2019180021
Ultrasound data of a variety of liver masses (B-mode-and-CEUS-Liver)
- Eisenbrey, J., Lyshchik, A., & Wessner, C. (2021). Ultrasound data of a variety of liver masses [Data set]. The Cancer Imaging Archive. DOI: https://doi.org/10.7937/TCIA.2021.v4z7-tc39
NSCLC-Radiomics
-
Aerts, H. J. W. L., Wee, L., Rios Velazquez, E., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2019). Data From NSCLC-Radiomics (version 4) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
-
Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2014, June 3). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms5006 (link)
QIN-PROSTATE-Repeatability
-
Fedorov, A; Schwier, M; Clunie, D; Herz, C; Pieper, S; Kikinis, R; Tempany, C; Fennessy, F. (2018). Data From QIN-PROSTATE-Repeatability. The Cancer Imaging Archive. DOI: 10.7937/K9/TCIA.2018.MR1CKGND
-
Fedorov A, Vangel MG, Tempany CM, Fennessy FM. Multiparametric Magnetic Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion Coefficient Quantification. Investigative Radiology. 52, 538–546 (2017). DOI: 10.1097/RLI.0000000000000382
-
Fedorov, A., Schwier, M., Clunie, D., Herz, C., Pieper, S., Kikinis,R., Tempany, C. & Fennessy, F. An annotated test-retest collection of prostate multiparametric MRI. Scientific Data 5, 180281 (2018). DOI:
The Clinical Proteomic Tumor Analysis Consortium Clear Cell Renal Cell Carcinoma Collection (CPTAC-CCRCC)
-
National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). (2018). The Clinical Proteomic Tumor Analysis Consortium Clear Cell Renal Cell Carcinoma Collection (CPTAC-CCRCC) (Version 10) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2018.OBLAMN27
-
The CPTAC program requests that publications using data from this program include the following statement: “Data used in this publication were generated by the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC).”
National Lung Screening Trial
-
National Lung Screening Trial Research Team. (2013). Data from the National Lung Screening Trial (NLST) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.HMQ8-J677
-
National Lung Screening Trial Research Team*; Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD (2011). Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365(5), 395–409. https://doi.org/10.1056/nejmoa1102873
Stony Brook University COVID-19 Positive Cases (COVID-19-NY-SBU)
- Saltz, J., Saltz, M., Prasanna, P., Moffitt, R., Hajagos, J., Bremer, E., Balsamo, J., & Kurc, T. (2021). Stony Brook University COVID-19 Positive Cases [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.BBAG-2923