Skip to content

Latest commit

 

History

History
188 lines (148 loc) · 4.35 KB

README.md

File metadata and controls

188 lines (148 loc) · 4.35 KB

ngraph.centrality build status

Library computes centrality for entire graph and returns object, where keys are nodes' identifiers and values are centrality values:

{
  node_1: centrality_value_for_node_1,
  node_2: centrality_value_for_node_2
  // ...
}

usage

var centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();

// Let's build a simple graph:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');

// this will consider graph as undirected:
var degreeCentrality = centrality.degree(g);

/*
degreeCentrality is:
{
  "fortran": 1,
  "c": 3,
  "c++": 2,
  "perl": 1,
  "javascript": 1
}
*/

// This will compute in-centrality:
var inCentrality = centrality.degree(g, 'in');
/* inCentrality is 
{
  "fortran": 0,
  "c": 1,
  "c++": 1,
  "perl": 1,
  "javascript": 1
}
*/

// out-centrality:
var outCentrality = centrality.degree(g, 'out');
/* outCentrality is
{
  "fortran": 1,
  "c": 2,
  "c++": 1,
  "perl": 0,
  "javascript": 0
}
*/

// You can also pass 'inout' or 'both' to get same results
// as `degreeCentrality`
var sameAsDegreeCentrality = centrality.degree(g, 'inout');

Performance of degree centrality calculation is:

  • inout: O(n), where n is number of nodes
  • in or out: O(n * a), where a is the average number of edges per node
var centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();
// Let's use the same graph as before:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');

// this will consider graph as undirected:
var betweenness = centrality.betweenness(g);
/* betweenness centrality is:

{
  "fortran": 0,
  "c": 5,
  "c++": 3,
  "perl": 0,
  "javascript": 0
}
*/

// this will consider graph as directed:
var directedBetweenness = centrality.betweenness(g, true);
/* directedBetweenness is:
{
  "fortran": 0,
  "c": 3,
  "c++": 2,
  "perl": 0,
  "javascript": 0
}
*/

Performance of betweenness calculation is O(n * e) time, and O(n + e) space where n is number of nodes and e is number of edges.

This library implements Brandes's algorithm published in A Faster Algorithm for Betweenness Centrality and further discussed in On Variants of Shortest-Path Betweenness Centrality and their Generic Computation.

In a connected graph, the normalized closeness centrality of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes.

var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);

var closeness = centrality.closeness(g);

// closeness is: 
// { 
//   '1': 0.6666666666666666,
//   '2': 1,
//   '3': 0.6666666666666666
// }

The eccentricity centrality of a node is the greatest distance between that node and any other node in the network. It can be thought of as how far a node is from the node most distant from it in the graph.

var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);

var eccentricity = centrality.eccentricity(g);

// eccentricity is: 
// { 
//   '1': 2,
//   '2': 1,
//   '3': 2
// }

Since the graph's diameter equals maximum eccentricity, we can easily calculate this using the returned object:

var eccentricityValues = Object.keys(eccentricity).map(function(key) {return eccentricity[key]});
var diameter = Math.max.apply(null, eccentricityValues);
// Returns 2

install

With npm do:

npm install ngraph.centrality

license

MIT

todo

It would be nice to have asynchronous version for each centrality calculator.