Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

yolo v3学习笔记 #100

Open
any86 opened this issue Feb 6, 2023 · 0 comments
Open

yolo v3学习笔记 #100

any86 opened this issue Feb 6, 2023 · 0 comments

Comments

@any86
Copy link
Owner

any86 commented Feb 6, 2023

还在学习中, 先记录一些关键点 , 稍后补充文字, 形成完整的笔记

遍历3种特征图的每一个像素, 输出tx,ty.tw,th,confidence, classes

image

tx/ty是特征图中的偏移量, 实际特征图中的每一个像素对应到原图上是多个像素, 所以特征图下的位置bx其实是个小数, 公式如下: bx = cx + sigmoid(tx), 这样保证调整偏差后bx依旧和cx是同一个格子内的点

th/tw是预设锚框缩放的比例, pw/ph是预设锚框的尺寸, 所以bw = pw * exp(tw), 这里是exp是指数运算, 具体为什么用exp我也没太弄明白, 总之就好求导, 因为指数的导数还是自己本身, 后续再深入研究明白他.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant