-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathvalues.rs
243 lines (215 loc) · 7.21 KB
/
values.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Values execution plan
use std::any::Any;
use std::sync::Arc;
use super::expressions::PhysicalSortExpr;
use super::{common, DisplayAs, SendableRecordBatchStream, Statistics};
use crate::{
memory::MemoryStream, ColumnarValue, DisplayFormatType, ExecutionPlan, Partitioning,
PhysicalExpr,
};
use arrow::array::new_null_array;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, plan_err, DataFusionError, Result, ScalarValue};
use datafusion_execution::TaskContext;
/// Execution plan for values list based relation (produces constant rows)
#[derive(Debug)]
pub struct ValuesExec {
/// The schema
schema: SchemaRef,
/// The data
data: Vec<RecordBatch>,
}
impl ValuesExec {
/// create a new values exec from data as expr
pub fn try_new(
schema: SchemaRef,
data: Vec<Vec<Arc<dyn PhysicalExpr>>>,
) -> Result<Self> {
if data.is_empty() {
return plan_err!("Values list cannot be empty");
}
let n_row = data.len();
let n_col = schema.fields().len();
// we have this single row, null, typed batch as a placeholder to satisfy evaluation argument
let batch = RecordBatch::try_new(
schema.clone(),
schema
.fields()
.iter()
.map(|field| new_null_array(field.data_type(), 1))
.collect::<Vec<_>>(),
)?;
let arr = (0..n_col)
.map(|j| {
(0..n_row)
.map(|i| {
let r = data[i][j].evaluate(&batch);
match r {
Ok(ColumnarValue::Scalar(scalar)) => Ok(scalar),
Ok(ColumnarValue::Array(a)) if a.len() == 1 => {
Ok(ScalarValue::List(a))
}
Ok(ColumnarValue::Array(a)) => {
plan_err!(
"Cannot have array values {a:?} in a values list"
)
}
Err(err) => Err(err),
}
})
.collect::<Result<Vec<_>>>()
.and_then(ScalarValue::iter_to_array)
})
.collect::<Result<Vec<_>>>()?;
let batch = RecordBatch::try_new(schema.clone(), arr)?;
let data: Vec<RecordBatch> = vec![batch];
Ok(Self { schema, data })
}
/// Create a new plan using the provided schema and batches.
///
/// Errors if any of the batches don't match the provided schema, or if no
/// batches are provided.
pub fn try_new_from_batches(
schema: SchemaRef,
batches: Vec<RecordBatch>,
) -> Result<Self> {
if batches.is_empty() {
return plan_err!("Values list cannot be empty");
}
for batch in &batches {
let batch_schema = batch.schema();
if batch_schema != schema {
return plan_err!(
"Batch has invalid schema. Expected: {schema}, got: {batch_schema}"
);
}
}
Ok(ValuesExec {
schema,
data: batches,
})
}
/// provides the data
pub fn data(&self) -> Vec<RecordBatch> {
self.data.clone()
}
}
impl DisplayAs for ValuesExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "ValuesExec")
}
}
}
}
impl ExecutionPlan for ValuesExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![]
}
/// Get the output partitioning of this plan
fn output_partitioning(&self) -> Partitioning {
Partitioning::UnknownPartitioning(1)
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
None
}
fn with_new_children(
self: Arc<Self>,
_: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(ValuesExec {
schema: self.schema.clone(),
data: self.data.clone(),
}))
}
fn execute(
&self,
partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
// GlobalLimitExec has a single output partition
if 0 != partition {
return internal_err!(
"ValuesExec invalid partition {partition} (expected 0)"
);
}
Ok(Box::pin(MemoryStream::try_new(
self.data(),
self.schema.clone(),
None,
)?))
}
fn statistics(&self) -> Result<Statistics> {
let batch = self.data();
Ok(common::compute_record_batch_statistics(
&[batch],
&self.schema,
None,
))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test::{self, make_partition};
use arrow_schema::{DataType, Field, Schema};
#[tokio::test]
async fn values_empty_case() -> Result<()> {
let schema = test::aggr_test_schema();
let empty = ValuesExec::try_new(schema, vec![]);
assert!(empty.is_err());
Ok(())
}
#[test]
fn new_exec_with_batches() {
let batch = make_partition(7);
let schema = batch.schema();
let batches = vec![batch.clone(), batch];
let _exec = ValuesExec::try_new_from_batches(schema, batches).unwrap();
}
#[test]
fn new_exec_with_batches_empty() {
let batch = make_partition(7);
let schema = batch.schema();
let _ = ValuesExec::try_new_from_batches(schema, Vec::new()).unwrap_err();
}
#[test]
fn new_exec_with_batches_invalid_schema() {
let batch = make_partition(7);
let batches = vec![batch.clone(), batch];
let invalid_schema = Arc::new(Schema::new(vec![
Field::new("col0", DataType::UInt32, false),
Field::new("col1", DataType::Utf8, false),
]));
let _ = ValuesExec::try_new_from_batches(invalid_schema, batches).unwrap_err();
}
}