-
Notifications
You must be signed in to change notification settings - Fork 839
/
Copy pathrle.rs
831 lines (747 loc) · 28.5 KB
/
rle.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::{cmp, mem::size_of};
use crate::errors::{ParquetError, Result};
use crate::util::{
bit_util::{self, from_ne_slice, BitReader, BitWriter, FromBytes},
memory::ByteBufferPtr,
};
/// Rle/Bit-Packing Hybrid Encoding
/// The grammar for this encoding looks like the following (copied verbatim
/// from <https://github.com/Parquet/parquet-format/blob/master/Encodings.md>):
///
/// rle-bit-packed-hybrid: <length> <encoded-data>
/// length := length of the <encoded-data> in bytes stored as 4 bytes little endian
/// encoded-data := <run>*
/// run := <bit-packed-run> | <rle-run>
/// bit-packed-run := <bit-packed-header> <bit-packed-values>
/// bit-packed-header := varint-encode(<bit-pack-count> << 1 | 1)
/// we always bit-pack a multiple of 8 values at a time, so we only store the number of
/// values / 8
/// bit-pack-count := (number of values in this run) / 8
/// bit-packed-values := *see 1 below*
/// rle-run := <rle-header> <repeated-value>
/// rle-header := varint-encode( (number of times repeated) << 1)
/// repeated-value := value that is repeated, using a fixed-width of
/// round-up-to-next-byte(bit-width)
/// Maximum groups per bit-packed run. Current value is 64.
const MAX_GROUPS_PER_BIT_PACKED_RUN: usize = 1 << 6;
const MAX_VALUES_PER_BIT_PACKED_RUN: usize = MAX_GROUPS_PER_BIT_PACKED_RUN * 8;
const MAX_WRITER_BUF_SIZE: usize = 1 << 10;
/// A RLE/Bit-Packing hybrid encoder.
// TODO: tracking memory usage
pub struct RleEncoder {
// Number of bits needed to encode the value. Must be in the range of [0, 64].
bit_width: u8,
// Underlying writer which holds an internal buffer.
bit_writer: BitWriter,
// The maximum byte size a single run can take.
max_run_byte_size: usize,
// Buffered values for bit-packed runs.
buffered_values: [u64; 8],
// Number of current buffered values. Must be less than 8.
num_buffered_values: usize,
// The current (also last) value that was written and the count of how many
// times in a row that value has been seen.
current_value: u64,
// The number of repetitions for `current_value`. If this gets too high we'd
// switch to use RLE encoding.
repeat_count: usize,
// Number of bit-packed values in the current run. This doesn't include values
// in `buffered_values`.
bit_packed_count: usize,
// The position of the indicator byte in the `bit_writer`.
indicator_byte_pos: i64,
}
impl RleEncoder {
pub fn new(bit_width: u8, buffer_len: usize) -> Self {
let buffer = vec![0; buffer_len];
RleEncoder::new_from_buf(bit_width, buffer, 0)
}
/// Initialize the encoder from existing `buffer` and the starting offset `start`.
pub fn new_from_buf(bit_width: u8, buffer: Vec<u8>, start: usize) -> Self {
assert!(bit_width <= 64, "bit_width ({}) out of range.", bit_width);
let max_run_byte_size = RleEncoder::min_buffer_size(bit_width);
assert!(
buffer.len() >= max_run_byte_size,
"buffer length {} must be greater than {}",
buffer.len(),
max_run_byte_size
);
let bit_writer = BitWriter::new_from_buf(buffer, start);
RleEncoder {
bit_width,
bit_writer,
max_run_byte_size,
buffered_values: [0; 8],
num_buffered_values: 0,
current_value: 0,
repeat_count: 0,
bit_packed_count: 0,
indicator_byte_pos: -1,
}
}
/// Returns the minimum buffer size needed to use the encoder for `bit_width`.
/// This is the maximum length of a single run for `bit_width`.
pub fn min_buffer_size(bit_width: u8) -> usize {
let max_bit_packed_run_size = 1 + bit_util::ceil(
(MAX_VALUES_PER_BIT_PACKED_RUN * bit_width as usize) as i64,
8,
);
let max_rle_run_size =
bit_util::MAX_VLQ_BYTE_LEN + bit_util::ceil(bit_width as i64, 8) as usize;
std::cmp::max(max_bit_packed_run_size as usize, max_rle_run_size)
}
/// Returns the maximum buffer size takes to encode `num_values` values with
/// `bit_width`.
pub fn max_buffer_size(bit_width: u8, num_values: usize) -> usize {
// First the maximum size for bit-packed run
let bytes_per_run = bit_width;
let num_runs = bit_util::ceil(num_values as i64, 8) as usize;
let bit_packed_max_size = num_runs + num_runs * bytes_per_run as usize;
// Second the maximum size for RLE run
let min_rle_run_size = 1 + bit_util::ceil(bit_width as i64, 8) as usize;
let rle_max_size =
bit_util::ceil(num_values as i64, 8) as usize * min_rle_run_size;
std::cmp::max(bit_packed_max_size, rle_max_size) as usize
}
/// Encodes `value`, which must be representable with `bit_width` bits.
/// Returns true if the value fits in buffer, false if it doesn't, or
/// error if something is wrong.
#[inline]
pub fn put(&mut self, value: u64) -> Result<bool> {
// This function buffers 8 values at a time. After seeing 8 values, it
// decides whether the current run should be encoded in bit-packed or RLE.
if self.current_value == value {
self.repeat_count += 1;
if self.repeat_count > 8 {
// A continuation of last value. No need to buffer.
return Ok(true);
}
} else {
if self.repeat_count >= 8 {
// The current RLE run has ended and we've gathered enough. Flush first.
assert_eq!(self.bit_packed_count, 0);
self.flush_rle_run()?;
}
self.repeat_count = 1;
self.current_value = value;
}
self.buffered_values[self.num_buffered_values] = value;
self.num_buffered_values += 1;
if self.num_buffered_values == 8 {
// Buffered values are full. Flush them.
assert_eq!(self.bit_packed_count % 8, 0);
self.flush_buffered_values()?;
}
Ok(true)
}
#[inline]
pub fn buffer(&self) -> &[u8] {
self.bit_writer.buffer()
}
#[inline]
pub fn len(&self) -> usize {
self.bit_writer.bytes_written()
}
#[inline]
pub fn consume(mut self) -> Result<Vec<u8>> {
self.flush()?;
Ok(self.bit_writer.consume())
}
/// Borrow equivalent of the `consume` method.
/// Call `clear()` after invoking this method.
#[inline]
pub fn flush_buffer(&mut self) -> Result<&[u8]> {
self.flush()?;
Ok(self.bit_writer.flush_buffer())
}
/// Clears the internal state so this encoder can be reused (e.g., after becoming
/// full).
#[inline]
pub fn clear(&mut self) {
self.bit_writer.clear();
self.num_buffered_values = 0;
self.current_value = 0;
self.repeat_count = 0;
self.bit_packed_count = 0;
self.indicator_byte_pos = -1;
}
/// Flushes all remaining values and return the final byte buffer maintained by the
/// internal writer.
#[inline]
pub fn flush(&mut self) -> Result<()> {
if self.bit_packed_count > 0
|| self.repeat_count > 0
|| self.num_buffered_values > 0
{
let all_repeat = self.bit_packed_count == 0
&& (self.repeat_count == self.num_buffered_values
|| self.num_buffered_values == 0);
if self.repeat_count > 0 && all_repeat {
self.flush_rle_run()?;
} else {
// Buffer the last group of bit-packed values to 8 by padding with 0s.
if self.num_buffered_values > 0 {
while self.num_buffered_values < 8 {
self.buffered_values[self.num_buffered_values] = 0;
self.num_buffered_values += 1;
}
}
self.bit_packed_count += self.num_buffered_values;
self.flush_bit_packed_run(true)?;
self.repeat_count = 0;
}
}
Ok(())
}
fn flush_rle_run(&mut self) -> Result<()> {
assert!(self.repeat_count > 0);
let indicator_value = self.repeat_count << 1;
let mut result = self.bit_writer.put_vlq_int(indicator_value as u64);
result &= self.bit_writer.put_aligned(
self.current_value,
bit_util::ceil(self.bit_width as i64, 8) as usize,
);
if !result {
return Err(general_err!("Failed to write RLE run"));
}
self.num_buffered_values = 0;
self.repeat_count = 0;
Ok(())
}
fn flush_bit_packed_run(&mut self, update_indicator_byte: bool) -> Result<()> {
if self.indicator_byte_pos < 0 {
self.indicator_byte_pos = self.bit_writer.skip(1)? as i64;
}
// Write all buffered values as bit-packed literals
for i in 0..self.num_buffered_values {
let _ = self
.bit_writer
.put_value(self.buffered_values[i], self.bit_width as usize);
}
self.num_buffered_values = 0;
if update_indicator_byte {
// Write the indicator byte to the reserved position in `bit_writer`
let num_groups = self.bit_packed_count / 8;
let indicator_byte = ((num_groups << 1) | 1) as u8;
if !self.bit_writer.put_aligned_offset(
indicator_byte,
1,
self.indicator_byte_pos as usize,
) {
return Err(general_err!("Not enough space to write indicator byte"));
}
self.indicator_byte_pos = -1;
self.bit_packed_count = 0;
}
Ok(())
}
#[inline(never)]
fn flush_buffered_values(&mut self) -> Result<()> {
if self.repeat_count >= 8 {
self.num_buffered_values = 0;
if self.bit_packed_count > 0 {
// In this case we choose RLE encoding. Flush the current buffered values
// as bit-packed encoding.
assert_eq!(self.bit_packed_count % 8, 0);
self.flush_bit_packed_run(true)?
}
return Ok(());
}
self.bit_packed_count += self.num_buffered_values;
let num_groups = self.bit_packed_count / 8;
if num_groups + 1 >= MAX_GROUPS_PER_BIT_PACKED_RUN {
// We've reached the maximum value that can be hold in a single bit-packed
// run.
assert!(self.indicator_byte_pos >= 0);
self.flush_bit_packed_run(true)?;
} else {
self.flush_bit_packed_run(false)?;
}
self.repeat_count = 0;
Ok(())
}
}
/// A RLE/Bit-Packing hybrid decoder.
pub struct RleDecoder {
// Number of bits used to encode the value. Must be between [0, 64].
bit_width: u8,
// Bit reader loaded with input buffer.
bit_reader: Option<BitReader>,
// Buffer used when `bit_reader` is not `None`, for batch reading.
index_buf: [i32; 1024],
// The remaining number of values in RLE for this run
rle_left: u32,
// The remaining number of values in Bit-Packing for this run
bit_packed_left: u32,
// The current value for the case of RLE mode
current_value: Option<u64>,
}
impl RleDecoder {
pub fn new(bit_width: u8) -> Self {
RleDecoder {
bit_width,
rle_left: 0,
bit_packed_left: 0,
bit_reader: None,
index_buf: [0; 1024],
current_value: None,
}
}
#[inline]
pub fn set_data(&mut self, data: ByteBufferPtr) {
if let Some(ref mut bit_reader) = self.bit_reader {
bit_reader.reset(data);
} else {
self.bit_reader = Some(BitReader::new(data));
}
let _ = self.reload();
}
// These functions inline badly, they tend to inline and then create very large loop unrolls
// that damage L1d-cache occupancy. This results in a ~18% performance drop
#[inline(never)]
pub fn get<T: FromBytes>(&mut self) -> Result<Option<T>> {
assert!(size_of::<T>() <= 8);
while self.rle_left == 0 && self.bit_packed_left == 0 {
if !self.reload() {
return Ok(None);
}
}
let value = if self.rle_left > 0 {
let rle_value = from_ne_slice(
&self
.current_value
.as_mut()
.expect("current_value should be Some")
.to_ne_bytes(),
);
self.rle_left -= 1;
rle_value
} else {
// self.bit_packed_left > 0
let bit_reader = self.bit_reader.as_mut().expect("bit_reader should be Some");
let bit_packed_value = bit_reader
.get_value(self.bit_width as usize)
.ok_or_else(|| eof_err!("Not enough data for 'bit_packed_value'"))?;
self.bit_packed_left -= 1;
bit_packed_value
};
Ok(Some(value))
}
#[inline(never)]
pub fn get_batch<T: FromBytes>(&mut self, buffer: &mut [T]) -> Result<usize> {
assert!(size_of::<T>() <= 8);
let mut values_read = 0;
while values_read < buffer.len() {
if self.rle_left > 0 {
let num_values =
cmp::min(buffer.len() - values_read, self.rle_left as usize);
for i in 0..num_values {
let repeated_value = from_ne_slice(
&self.current_value.as_mut().unwrap().to_ne_bytes(),
);
buffer[values_read + i] = repeated_value;
}
self.rle_left -= num_values as u32;
values_read += num_values;
} else if self.bit_packed_left > 0 {
let mut num_values =
cmp::min(buffer.len() - values_read, self.bit_packed_left as usize);
let bit_reader =
self.bit_reader.as_mut().expect("bit_reader should be set");
num_values = bit_reader.get_batch::<T>(
&mut buffer[values_read..values_read + num_values],
self.bit_width as usize,
);
self.bit_packed_left -= num_values as u32;
values_read += num_values;
} else if !self.reload() {
break;
}
}
Ok(values_read)
}
#[inline(never)]
pub fn get_batch_with_dict<T>(
&mut self,
dict: &[T],
buffer: &mut [T],
max_values: usize,
) -> Result<usize>
where
T: Default + Clone,
{
assert!(buffer.len() >= max_values);
let mut values_read = 0;
while values_read < max_values {
if self.rle_left > 0 {
let num_values =
cmp::min(max_values - values_read, self.rle_left as usize);
let dict_idx = self.current_value.unwrap() as usize;
for i in 0..num_values {
buffer[values_read + i].clone_from(&dict[dict_idx]);
}
self.rle_left -= num_values as u32;
values_read += num_values;
} else if self.bit_packed_left > 0 {
let bit_reader =
self.bit_reader.as_mut().expect("bit_reader should be set");
let mut num_values =
cmp::min(max_values - values_read, self.bit_packed_left as usize);
num_values = cmp::min(num_values, self.index_buf.len());
loop {
num_values = bit_reader.get_batch::<i32>(
&mut self.index_buf[..num_values],
self.bit_width as usize,
);
for i in 0..num_values {
buffer[values_read + i]
.clone_from(&dict[self.index_buf[i] as usize])
}
self.bit_packed_left -= num_values as u32;
values_read += num_values;
if num_values < self.index_buf.len() {
break;
}
}
} else if !self.reload() {
break;
}
}
Ok(values_read)
}
#[inline]
fn reload(&mut self) -> bool {
let bit_reader = self.bit_reader.as_mut().expect("bit_reader should be set");
if let Some(indicator_value) = bit_reader.get_vlq_int() {
if indicator_value & 1 == 1 {
self.bit_packed_left = ((indicator_value >> 1) * 8) as u32;
} else {
self.rle_left = (indicator_value >> 1) as u32;
let value_width = bit_util::ceil(self.bit_width as i64, 8);
self.current_value = bit_reader.get_aligned::<u64>(value_width as usize);
assert!(self.current_value.is_some());
}
true
} else {
false
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{self, distributions::Standard, thread_rng, Rng, SeedableRng};
use crate::util::memory::ByteBufferPtr;
const MAX_WIDTH: usize = 32;
#[test]
fn test_rle_decode_int32() {
// Test data: 0-7 with bit width 3
// 00000011 10001000 11000110 11111010
let data = ByteBufferPtr::new(vec![0x03, 0x88, 0xC6, 0xFA]);
let mut decoder: RleDecoder = RleDecoder::new(3);
decoder.set_data(data);
let mut buffer = vec![0; 8];
let expected = vec![0, 1, 2, 3, 4, 5, 6, 7];
let result = decoder.get_batch::<i32>(&mut buffer);
assert!(result.is_ok());
assert_eq!(buffer, expected);
}
#[test]
fn test_rle_consume_flush_buffer() {
let data = vec![1, 1, 1, 2, 2, 3, 3, 3];
let mut encoder1 = RleEncoder::new(3, 256);
let mut encoder2 = RleEncoder::new(3, 256);
for value in data {
encoder1.put(value as u64).unwrap();
encoder2.put(value as u64).unwrap();
}
let res1 = encoder1.flush_buffer().unwrap();
let res2 = encoder2.consume().unwrap();
assert_eq!(res1, &res2[..]);
}
#[test]
fn test_rle_decode_bool() {
// RLE test data: 50 1s followed by 50 0s
// 01100100 00000001 01100100 00000000
let data1 = ByteBufferPtr::new(vec![0x64, 0x01, 0x64, 0x00]);
// Bit-packing test data: alternating 1s and 0s, 100 total
// 100 / 8 = 13 groups
// 00011011 10101010 ... 00001010
let data2 = ByteBufferPtr::new(vec![
0x1B, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0x0A,
]);
let mut decoder: RleDecoder = RleDecoder::new(1);
decoder.set_data(data1);
let mut buffer = vec![false; 100];
let mut expected = vec![];
for i in 0..100 {
if i < 50 {
expected.push(true);
} else {
expected.push(false);
}
}
let result = decoder.get_batch::<bool>(&mut buffer);
assert!(result.is_ok());
assert_eq!(buffer, expected);
decoder.set_data(data2);
let mut buffer = vec![false; 100];
let mut expected = vec![];
for i in 0..100 {
if i % 2 == 0 {
expected.push(false);
} else {
expected.push(true);
}
}
let result = decoder.get_batch::<bool>(&mut buffer);
assert!(result.is_ok());
assert_eq!(buffer, expected);
}
#[test]
fn test_rle_decode_with_dict_int32() {
// Test RLE encoding: 3 0s followed by 4 1s followed by 5 2s
// 00000110 00000000 00001000 00000001 00001010 00000010
let dict = vec![10, 20, 30];
let data = ByteBufferPtr::new(vec![0x06, 0x00, 0x08, 0x01, 0x0A, 0x02]);
let mut decoder: RleDecoder = RleDecoder::new(3);
decoder.set_data(data);
let mut buffer = vec![0; 12];
let expected = vec![10, 10, 10, 20, 20, 20, 20, 30, 30, 30, 30, 30];
let result = decoder.get_batch_with_dict::<i32>(&dict, &mut buffer, 12);
assert!(result.is_ok());
assert_eq!(buffer, expected);
// Test bit-pack encoding: 345345345455 (2 groups: 8 and 4)
// 011 100 101 011 100 101 011 100 101 100 101 101
// 00000011 01100011 11000111 10001110 00000011 01100101 00001011
let dict = vec!["aaa", "bbb", "ccc", "ddd", "eee", "fff"];
let data = ByteBufferPtr::new(vec![0x03, 0x63, 0xC7, 0x8E, 0x03, 0x65, 0x0B]);
let mut decoder: RleDecoder = RleDecoder::new(3);
decoder.set_data(data);
let mut buffer = vec![""; 12];
let expected = vec![
"ddd", "eee", "fff", "ddd", "eee", "fff", "ddd", "eee", "fff", "eee", "fff",
"fff",
];
let result = decoder.get_batch_with_dict::<&str>(
dict.as_slice(),
buffer.as_mut_slice(),
12,
);
assert!(result.is_ok());
assert_eq!(buffer, expected);
}
fn validate_rle(
values: &[i64],
bit_width: u8,
expected_encoding: Option<&[u8]>,
expected_len: i32,
) {
let buffer_len = 64 * 1024;
let mut encoder = RleEncoder::new(bit_width, buffer_len);
for v in values {
let result = encoder.put(*v as u64);
assert!(result.is_ok());
}
let buffer = ByteBufferPtr::new(encoder.consume().expect("Expect consume() OK"));
if expected_len != -1 {
assert_eq!(buffer.len(), expected_len as usize);
}
if let Some(b) = expected_encoding {
assert_eq!(buffer.as_ref(), b);
}
// Verify read
let mut decoder = RleDecoder::new(bit_width);
decoder.set_data(buffer.all());
for v in values {
let val: i64 = decoder
.get()
.expect("get() should be OK")
.expect("get() should return more value");
assert_eq!(val, *v);
}
// Verify batch read
decoder.set_data(buffer);
let mut values_read: Vec<i64> = vec![0; values.len()];
decoder
.get_batch(&mut values_read[..])
.expect("get_batch() should be OK");
assert_eq!(&values_read[..], values);
}
#[test]
fn test_rle_specific_sequences() {
let mut expected_buffer = Vec::new();
let mut values = Vec::new();
for _ in 0..50 {
values.push(0);
}
for _ in 0..50 {
values.push(1);
}
expected_buffer.push(50 << 1);
expected_buffer.push(0);
expected_buffer.push(50 << 1);
expected_buffer.push(1);
for width in 1..9 {
validate_rle(&values[..], width, Some(&expected_buffer[..]), 4);
}
for width in 9..MAX_WIDTH + 1 {
validate_rle(
&values[..],
width as u8,
None,
2 * (1 + bit_util::ceil(width as i64, 8) as i32),
);
}
// Test 100 0's and 1's alternating
values.clear();
expected_buffer.clear();
for i in 0..101 {
values.push(i % 2);
}
let num_groups = bit_util::ceil(100, 8) as u8;
expected_buffer.push(((num_groups << 1) as u8) | 1);
for _ in 1..(100 / 8) + 1 {
expected_buffer.push(0b10101010);
}
// For the last 4 0 and 1's, padded with 0.
expected_buffer.push(0b00001010);
validate_rle(
&values,
1,
Some(&expected_buffer[..]),
1 + num_groups as i32,
);
for width in 2..MAX_WIDTH + 1 {
let num_values = bit_util::ceil(100, 8) * 8;
validate_rle(
&values,
width as u8,
None,
1 + bit_util::ceil(width as i64 * num_values, 8) as i32,
);
}
}
// `validate_rle` on `num_vals` with width `bit_width`. If `value` is -1, that value
// is used, otherwise alternating values are used.
fn test_rle_values(bit_width: usize, num_vals: usize, value: i32) {
let mod_val = if bit_width == 64 {
1
} else {
1u64 << bit_width
};
let mut values: Vec<i64> = vec![];
for v in 0..num_vals {
let val = if value == -1 {
v as i64 % mod_val as i64
} else {
value as i64
};
values.push(val);
}
validate_rle(&values, bit_width as u8, None, -1);
}
#[test]
fn test_values() {
for width in 1..MAX_WIDTH + 1 {
test_rle_values(width, 1, -1);
test_rle_values(width, 1024, -1);
test_rle_values(width, 1024, 0);
test_rle_values(width, 1024, 1);
}
}
#[test]
fn test_rle_specific_roundtrip() {
let bit_width = 1;
let buffer_len = RleEncoder::min_buffer_size(bit_width);
let values: Vec<i16> = vec![0, 1, 1, 1, 1, 0, 0, 0, 0, 1];
let mut encoder = RleEncoder::new(bit_width, buffer_len);
for v in &values {
assert!(encoder.put(*v as u64).expect("put() should be OK"));
}
let buffer = encoder.consume().expect("consume() should be OK");
let mut decoder = RleDecoder::new(bit_width);
decoder.set_data(ByteBufferPtr::new(buffer));
let mut actual_values: Vec<i16> = vec![0; values.len()];
decoder
.get_batch(&mut actual_values)
.expect("get_batch() should be OK");
assert_eq!(actual_values, values);
}
fn test_round_trip(values: &[i32], bit_width: u8) {
let buffer_len = 64 * 1024;
let mut encoder = RleEncoder::new(bit_width, buffer_len);
for v in values {
let result = encoder.put(*v as u64).expect("put() should be OK");
assert!(result, "put() should not return false");
}
let buffer =
ByteBufferPtr::new(encoder.consume().expect("consume() should be OK"));
// Verify read
let mut decoder = RleDecoder::new(bit_width);
decoder.set_data(buffer.all());
for v in values {
let val = decoder
.get::<i32>()
.expect("get() should be OK")
.expect("get() should return value");
assert_eq!(val, *v);
}
// Verify batch read
let mut decoder = RleDecoder::new(bit_width);
decoder.set_data(buffer);
let mut values_read: Vec<i32> = vec![0; values.len()];
decoder
.get_batch(&mut values_read[..])
.expect("get_batch() should be OK");
assert_eq!(&values_read[..], values);
}
#[test]
fn test_random() {
let seed_len = 32;
let niters = 50;
let ngroups = 1000;
let max_group_size = 15;
let mut values = vec![];
for _ in 0..niters {
values.clear();
let rng = thread_rng();
let seed_vec: Vec<u8> =
rng.sample_iter::<u8, _>(&Standard).take(seed_len).collect();
let mut seed = [0u8; 32];
seed.copy_from_slice(&seed_vec[0..seed_len]);
let mut gen = rand::rngs::StdRng::from_seed(seed);
let mut parity = false;
for _ in 0..ngroups {
let mut group_size = gen.gen_range(1..20);
if group_size > max_group_size {
group_size = 1;
}
for _ in 0..group_size {
values.push(parity as i32);
}
parity = !parity;
}
let bit_width = bit_util::num_required_bits(values.len() as u64);
assert!(bit_width < 64);
test_round_trip(&values[..], bit_width as u8);
}
}
}