Download and unzip spark-2.4.5-bin-hadoop2.7.tgz, and export $SPARK_HOME
Package carbon jar, and copy assembly/target/scala-2.11/carbondata_2.11-2.0.0-SNAPSHOT-shade-hadoop2.7.2.jar to $SPARK_HOME/jars
mvn clean package -DskipTests -Pspark-2.4
Start a socket data server in a terminal
nc -lk 9099
type some CSV rows as following
1,col1
2,col2
3,col3
4,col4
5,col5
Start spark-shell in new terminal, type :paste, then copy and run the following code.
import java.io.File
import org.apache.spark.sql.{CarbonEnv, SparkSession}
import org.apache.spark.sql.CarbonSession._
import org.apache.spark.sql.streaming.Trigger.ProcessingTime
import org.apache.spark.sql.streaming.StreamingQuery
import org.apache.carbondata.core.util.path.CarbonTablePath
import org.apache.carbondata.streaming.parser.CarbonStreamParser
val warehouse = new File("./warehouse").getCanonicalPath
val metastore = new File("./metastore").getCanonicalPath
val spark = SparkSession
.builder()
.master("local")
.appName("StreamExample")
.config("spark.sql.warehouse.dir", warehouse)
.getOrCreateCarbonSession(warehouse, metastore)
spark.sparkContext.setLogLevel("ERROR")
// drop table if exists previously
spark.sql(s"DROP TABLE IF EXISTS carbon_table")
// Create target carbon table and populate with initial data
spark.sql(
s"""
| CREATE TABLE carbon_table (
| col1 INT,
| col2 STRING
| )
| STORED AS carbondata
| TBLPROPERTIES('streaming'='true')""".stripMargin)
val carbonTable = CarbonEnv.getCarbonTable(Some("default"), "carbon_table")(spark)
val tablePath = carbonTable.getTablePath
// batch load
var qry: StreamingQuery = null
val readSocketDF = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9099)
.load()
// Write data from socket stream to carbondata file
qry = readSocketDF.writeStream
.format("carbondata")
.trigger(ProcessingTime("5 seconds"))
.option("checkpointLocation", CarbonTablePath.getStreamingCheckpointDir(tablePath))
.option("dbName", "default")
.option("tableName", "carbon_table")
.option(CarbonStreamParser.CARBON_STREAM_PARSER,
CarbonStreamParser.CARBON_STREAM_PARSER_CSV)
.start()
// start new thread to show data
new Thread() {
override def run(): Unit = {
do {
spark.sql("select * from carbon_table").show(false)
Thread.sleep(10000)
} while (true)
}
}.start()
qry.awaitTermination()
Continue to type some rows into data server, and spark-shell will show the new data of the table.
Streaming table is just a normal carbon table with "streaming" table property, user can create streaming table using following DDL.
CREATE TABLE streaming_table (
col1 INT,
col2 STRING
)
STORED AS carbondata
TBLPROPERTIES('streaming'='true')
property name | default | description |
---|---|---|
streaming | false | Whether to enable streaming ingest feature for this table Value range: true, false |
"DESC FORMATTED" command will show streaming property.
DESC FORMATTED streaming_table
NOTE: Streaming table doesn't support alter table schema operations such as alter add column, drop column, rename column, change datatype and rename table name.
For an old table, use ALTER TABLE command to set the streaming property.
ALTER TABLE streaming_table SET TBLPROPERTIES('streaming'='true')
At the begin of streaming ingestion, the system will try to acquire the table level lock of streaming.lock file. If the system isn't able to acquire the lock of this table, it will throw an InterruptedException.
The streaming data will be ingested into a separate segment of carbondata table, this segment is termed as streaming segment. The status of this segment will be recorded as "streaming" in "tablestatus" file along with its data size. You can use "SHOW SEGMENTS FOR TABLE tableName" to check segment status.
After the streaming segment reaches the max size, CarbonData will change the segment status to "streaming finish" from "streaming", and create new "streaming" segment to continue to ingest streaming data.
option | default | description |
---|---|---|
carbon.streaming.segment.max.size | 1024000000 | Unit: byte max size of streaming segment |
segment status | description |
---|---|
streaming | The segment is running streaming ingestion |
streaming finish | The segment already finished streaming ingestion, it will be handed off to a segment in the columnar format |
Use below command to change the status of "streaming" segment to "streaming finish" segment. If the streaming application is running, this command will be blocked.
ALTER TABLE streaming_table FINISH STREAMING
Use below command to handoff "streaming finish" segment to columnar format segment manually.
ALTER TABLE streaming_table COMPACT 'streaming'
Config the property "carbon.streaming.auto.handoff.enabled" to auto handoff streaming segment. If the value of this property is true, after the streaming segment reaches the max size, CarbonData will change this segment to "streaming finish" status and trigger to auto handoff this segment to columnar format segment in a new thread.
property name | default | description |
---|---|---|
carbon.streaming.auto.handoff.enabled | true | whether to auto trigger handoff operation |
Config the property "carbon.stream.parser" to define a stream parser to convert InternalRow to Object[] when write stream data.
property name | default | description |
---|---|---|
carbon.stream.parser | org.apache.carbondata.streaming.parser.RowStreamParserImp | the class of the stream parser |
Currently CarbonData support two parsers, as following:
1. org.apache.carbondata.streaming.parser.CSVStreamParserImp: This parser gets a line data(String type) from the first index of InternalRow and converts this String to Object[].
2. org.apache.carbondata.streaming.parser.RowStreamParserImp: This is the default stream parser, it will auto convert InternalRow to Object[] according to schema of this DataSet
, for example:
case class FileElement(school: Array[String], age: Int)
case class StreamData(id: Int, name: String, city: String, salary: Float, file: FileElement)
...
var qry: StreamingQuery = null
val readSocketDF = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9099)
.load()
.as[String]
.map(_.split(","))
.map { fields => {
val tmp = fields(4).split("\\$")
val file = FileElement(tmp(0).split(":"), tmp(1).toInt)
StreamData(fields(0).toInt, fields(1), fields(2), fields(3).toFloat, file)
} }
// Write data from socket stream to carbondata file
qry = readSocketDF.writeStream
.format("carbondata")
.trigger(ProcessingTime("5 seconds"))
.option("checkpointLocation", tablePath.getStreamingCheckpointDir)
.option("dbName", "default")
.option("tableName", "carbon_table")
.start()
...
If user needs to implement a customized stream parser to convert a specific InternalRow to Object[], it needs to implement initialize
method and parserRow
method of interface CarbonStreamParser
, for example:
package org.XXX.XXX.streaming.parser
import org.apache.hadoop.conf.Configuration
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.types.StructType
class XXXStreamParserImp extends CarbonStreamParser {
override def initialize(configuration: Configuration, structType: StructType): Unit = {
// user can get the properties from "configuration"
}
override def parserRow(value: InternalRow): Array[Object] = {
// convert InternalRow to Object[](Array[Object] in Scala)
}
override def close(): Unit = {
}
}
and then set the property "carbon.stream.parser" to "org.XXX.XXX.streaming.parser.XXXStreamParserImp".
Use below command to handoff all streaming segments to columnar format segments and modify the streaming property to false, this table becomes a normal table.
ALTER TABLE streaming_table COMPACT 'close_streaming'
- reject set streaming property from true to false.
- reject UPDATE/DELETE command on the streaming table.
- reject create MV on the streaming table.
- reject add the streaming property on the table with MV.
- if the table has dictionary columns, it will not support concurrent data loading.
- block delete "streaming" segment while the streaming ingestion is running.
- block drop the streaming table while the streaming ingestion is running.
Example
Following example shows how to start a streaming ingest job
sql(
s"""
|CREATE TABLE source(
| id INT,
| name STRING,
| city STRING,
| salary FLOAT,
| tax DECIMAL(8,2),
| percent double,
| birthday DATE,
| register TIMESTAMP,
| updated TIMESTAMP
|)
|STORED AS carbondata
|TBLPROPERTIES (
| 'streaming'='source',
| 'format'='csv',
| 'path'='$csvDataDir'
|)
""".stripMargin)
sql(
s"""
|CREATE TABLE sink(
| id INT,
| name STRING,
| city STRING,
| salary FLOAT,
| tax DECIMAL(8,2),
| percent double,
| birthday DATE,
| register TIMESTAMP,
| updated TIMESTAMP
|)
|STORED AS carbondata
|TBLPROPERTIES (
| 'streaming'='true'
|)
""".stripMargin)
sql(
"""
|CREATE STREAM job123 ON TABLE sink
|STMPROPERTIES(
| 'trigger'='ProcessingTime',
| 'interval'='1 seconds')
|AS
| SELECT *
| FROM source
| WHERE id % 2 = 1
""".stripMargin)
sql("DROP STREAM job123")
sql("SHOW STREAMS [ON TABLE tableName]")
In above example, two table is created: source and sink. The source
table's format is csv
and sink
table format is carbon
. Then a streaming job is created to stream data from source table to sink table.
These two tables are normal carbon tables, they can be queried independently.
As above example shown:
CREATE STREAM jobName ON TABLE tableName
is used to start a streaming ingest job.DROP STREAM jobName
is used to stop a streaming job by its nameSHOW STREAMS [ON TABLE tableName]
is used to print streaming job information
When this is issued, carbon will start a structured streaming job to do the streaming ingestion. Before launching the job, system will validate:
-
The format of table specified in CTAS FROM clause must be one of: csv, json, text, parquet, kafka, socket. These are formats supported by spark 2.2.0 structured streaming
-
User should pass the options of the streaming source table in its TBLPROPERTIES when creating it. StreamSQL will pass them transparently to spark when creating the streaming job. For example:
CREATE TABLE source( name STRING, age INT ) STORED AS carbondata TBLPROPERTIES( 'streaming'='source', 'format'='socket', 'host'='localhost', 'port'='8888', 'record_format'='csv', // can be csv or json, default is csv 'delimiter'='|' )
will translate to
spark.readStream .schema(tableSchema) .format("socket") .option("host", "localhost") .option("port", "8888") .option("delimiter", "|")
-
The sink table should have a TBLPROPERTY
'streaming'
equal totrue
, indicating it is a streaming table. -
In the given STMPROPERTIES, user must specify
'trigger'
, its value must beProcessingTime
(In future, other value will be supported). User should also specify interval value for the streaming job. -
If the schema specified in sink table is different from CTAS, the streaming job will fail
For Kafka data source, create the source table by:
CREATE TABLE source(
name STRING,
age INT
)
STORED AS carbondata
TBLPROPERTIES(
'streaming'='source',
'format'='kafka',
'kafka.bootstrap.servers'='kafkaserver:9092',
'subscribe'='test'
'record_format'='csv', // can be csv or json, default is csv
'delimiter'='|'
)
- Then CREATE STREAM can be used to start the streaming ingest job from source table to sink table
CREATE STREAM job123 ON TABLE sink
STMPROPERTIES(
'trigger'='ProcessingTime',
'interval'='10 seconds'
)
AS
SELECT *
FROM source
WHERE id % 2 = 1
When DROP STREAM
is issued, the streaming job will be stopped immediately. It will fail if the jobName specified is not exist.
DROP STREAM job123
SHOW STREAMS ON TABLE tableName
command will print the streaming job information as following
Job name | status | Source | Sink | start time | time elapsed |
---|---|---|---|---|---|
job123 | Started | device | fact | 2018-02-03 14:32:42 | 10d2h32m |
SHOW STREAMS
command will show all stream jobs in the system.
When the streaming application is stopped, and user want to manually trigger data conversion from carbon streaming files to columnar files, one can use
ALTER TABLE sink COMPACT 'CLOSE_STREAMING';