-
Notifications
You must be signed in to change notification settings - Fork 78
/
expr.rs
705 lines (657 loc) · 27.4 KB
/
expr.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion_expr::utils::exprlist_to_fields;
use datafusion_expr::LogicalPlan;
use pyo3::{basic::CompareOp, prelude::*};
use std::convert::{From, Into};
use std::sync::Arc;
use datafusion::arrow::datatypes::{DataType, Field};
use datafusion::arrow::pyarrow::PyArrowType;
use datafusion::scalar::ScalarValue;
use datafusion_expr::{
col,
expr::{AggregateFunction, InList, InSubquery, ScalarFunction, Sort, WindowFunction},
lit, Between, BinaryExpr, Case, Cast, Expr, GetFieldAccess, GetIndexedField, Like, Operator,
TryCast,
};
use crate::common::data_type::{DataTypeMap, RexType};
use crate::errors::{py_datafusion_err, py_runtime_err, py_type_err, DataFusionError};
use crate::expr::aggregate_expr::PyAggregateFunction;
use crate::expr::binary_expr::PyBinaryExpr;
use crate::expr::column::PyColumn;
use crate::expr::literal::PyLiteral;
use crate::sql::logical::PyLogicalPlan;
use self::alias::PyAlias;
use self::bool_expr::{
PyIsFalse, PyIsNotFalse, PyIsNotNull, PyIsNotTrue, PyIsNotUnknown, PyIsNull, PyIsTrue,
PyIsUnknown, PyNegative, PyNot,
};
use self::like::{PyILike, PyLike, PySimilarTo};
use self::scalar_variable::PyScalarVariable;
pub mod aggregate;
pub mod aggregate_expr;
pub mod alias;
pub mod analyze;
pub mod between;
pub mod binary_expr;
pub mod bool_expr;
pub mod case;
pub mod cast;
pub mod column;
pub mod conditional_expr;
pub mod create_memory_table;
pub mod create_view;
pub mod cross_join;
pub mod distinct;
pub mod drop_table;
pub mod empty_relation;
pub mod exists;
pub mod explain;
pub mod extension;
pub mod filter;
pub mod grouping_set;
pub mod in_list;
pub mod in_subquery;
pub mod indexed_field;
pub mod join;
pub mod like;
pub mod limit;
pub mod literal;
pub mod logical_node;
pub mod placeholder;
pub mod projection;
pub mod repartition;
pub mod scalar_subquery;
pub mod scalar_variable;
pub mod signature;
pub mod sort;
pub mod subquery;
pub mod subquery_alias;
pub mod table_scan;
pub mod union;
pub mod unnest;
pub mod window;
/// A PyExpr that can be used on a DataFrame
#[pyclass(name = "Expr", module = "datafusion.expr", subclass)]
#[derive(Debug, Clone)]
pub struct PyExpr {
pub expr: Expr,
}
impl From<PyExpr> for Expr {
fn from(expr: PyExpr) -> Expr {
expr.expr
}
}
impl From<Expr> for PyExpr {
fn from(expr: Expr) -> PyExpr {
PyExpr { expr }
}
}
/// Convert a list of DataFusion Expr to PyExpr
pub fn py_expr_list(expr: &[Expr]) -> PyResult<Vec<PyExpr>> {
Ok(expr.iter().map(|e| PyExpr::from(e.clone())).collect())
}
#[pymethods]
impl PyExpr {
/// Return the specific expression
fn to_variant(&self, py: Python) -> PyResult<PyObject> {
Python::with_gil(|_| match &self.expr {
Expr::Alias(alias) => Ok(PyAlias::new(&alias.expr, &alias.name).into_py(py)),
Expr::Column(col) => Ok(PyColumn::from(col.clone()).into_py(py)),
Expr::ScalarVariable(data_type, variables) => {
Ok(PyScalarVariable::new(data_type, variables).into_py(py))
}
Expr::Like(value) => Ok(PyLike::from(value.clone()).into_py(py)),
Expr::Literal(value) => Ok(PyLiteral::from(value.clone()).into_py(py)),
Expr::BinaryExpr(expr) => Ok(PyBinaryExpr::from(expr.clone()).into_py(py)),
Expr::Not(expr) => Ok(PyNot::new(*expr.clone()).into_py(py)),
Expr::IsNotNull(expr) => Ok(PyIsNotNull::new(*expr.clone()).into_py(py)),
Expr::IsNull(expr) => Ok(PyIsNull::new(*expr.clone()).into_py(py)),
Expr::IsTrue(expr) => Ok(PyIsTrue::new(*expr.clone()).into_py(py)),
Expr::IsFalse(expr) => Ok(PyIsFalse::new(*expr.clone()).into_py(py)),
Expr::IsUnknown(expr) => Ok(PyIsUnknown::new(*expr.clone()).into_py(py)),
Expr::IsNotTrue(expr) => Ok(PyIsNotTrue::new(*expr.clone()).into_py(py)),
Expr::IsNotFalse(expr) => Ok(PyIsNotFalse::new(*expr.clone()).into_py(py)),
Expr::IsNotUnknown(expr) => Ok(PyIsNotUnknown::new(*expr.clone()).into_py(py)),
Expr::Negative(expr) => Ok(PyNegative::new(*expr.clone()).into_py(py)),
Expr::AggregateFunction(expr) => {
Ok(PyAggregateFunction::from(expr.clone()).into_py(py))
}
other => Err(py_runtime_err(format!(
"Cannot convert this Expr to a Python object: {:?}",
other
))),
})
}
/// Returns the name of this expression as it should appear in a schema. This name
/// will not include any CAST expressions.
fn display_name(&self) -> PyResult<String> {
Ok(self.expr.display_name()?)
}
/// Returns a full and complete string representation of this expression.
fn canonical_name(&self) -> PyResult<String> {
Ok(self.expr.canonical_name())
}
/// Returns the name of the Expr variant.
/// Ex: 'IsNotNull', 'Literal', 'BinaryExpr', etc
fn variant_name(&self) -> PyResult<&str> {
Ok(self.expr.variant_name())
}
fn __richcmp__(&self, other: PyExpr, op: CompareOp) -> PyExpr {
let expr = match op {
CompareOp::Lt => self.expr.clone().lt(other.expr),
CompareOp::Le => self.expr.clone().lt_eq(other.expr),
CompareOp::Eq => self.expr.clone().eq(other.expr),
CompareOp::Ne => self.expr.clone().not_eq(other.expr),
CompareOp::Gt => self.expr.clone().gt(other.expr),
CompareOp::Ge => self.expr.clone().gt_eq(other.expr),
};
expr.into()
}
fn __repr__(&self) -> PyResult<String> {
Ok(format!("Expr({})", self.expr))
}
fn __add__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok((self.expr.clone() + rhs.expr).into())
}
fn __sub__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok((self.expr.clone() - rhs.expr).into())
}
fn __truediv__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok((self.expr.clone() / rhs.expr).into())
}
fn __mul__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok((self.expr.clone() * rhs.expr).into())
}
fn __mod__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
let expr = self.expr.clone() % rhs.expr;
Ok(expr.into())
}
fn __and__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok(self.expr.clone().and(rhs.expr).into())
}
fn __or__(&self, rhs: PyExpr) -> PyResult<PyExpr> {
Ok(self.expr.clone().or(rhs.expr).into())
}
fn __invert__(&self) -> PyResult<PyExpr> {
let expr = !self.expr.clone();
Ok(expr.into())
}
fn __getitem__(&self, key: &str) -> PyResult<PyExpr> {
Ok(Expr::GetIndexedField(GetIndexedField::new(
Box::new(self.expr.clone()),
GetFieldAccess::NamedStructField {
name: ScalarValue::Utf8(Some(key.to_string())),
},
))
.into())
}
#[staticmethod]
pub fn literal(value: ScalarValue) -> PyExpr {
lit(value).into()
}
#[staticmethod]
pub fn column(value: &str) -> PyExpr {
col(value).into()
}
/// assign a name to the PyExpr
pub fn alias(&self, name: &str) -> PyExpr {
self.expr.clone().alias(name).into()
}
/// Create a sort PyExpr from an existing PyExpr.
#[pyo3(signature = (ascending=true, nulls_first=true))]
pub fn sort(&self, ascending: bool, nulls_first: bool) -> PyExpr {
self.expr.clone().sort(ascending, nulls_first).into()
}
pub fn is_null(&self) -> PyExpr {
self.expr.clone().is_null().into()
}
pub fn cast(&self, to: PyArrowType<DataType>) -> PyExpr {
// self.expr.cast_to() requires DFSchema to validate that the cast
// is supported, omit that for now
let expr = Expr::Cast(Cast::new(Box::new(self.expr.clone()), to.0));
expr.into()
}
/// A Rex (Row Expression) specifies a single row of data. That specification
/// could include user defined functions or types. RexType identifies the row
/// as one of the possible valid `RexTypes`.
pub fn rex_type(&self) -> PyResult<RexType> {
Ok(match self.expr {
Expr::Alias(..) => RexType::Alias,
Expr::Column(..) | Expr::GetIndexedField { .. } => RexType::Reference,
Expr::ScalarVariable(..) | Expr::Literal(..) => RexType::Literal,
Expr::BinaryExpr { .. }
| Expr::Not(..)
| Expr::IsNotNull(..)
| Expr::Negative(..)
| Expr::IsNull(..)
| Expr::Like { .. }
| Expr::SimilarTo { .. }
| Expr::Between { .. }
| Expr::Case { .. }
| Expr::Cast { .. }
| Expr::TryCast { .. }
| Expr::Sort { .. }
| Expr::ScalarFunction { .. }
| Expr::AggregateFunction { .. }
| Expr::WindowFunction { .. }
| Expr::InList { .. }
| Expr::Wildcard { .. }
| Expr::Exists { .. }
| Expr::InSubquery { .. }
| Expr::GroupingSet(..)
| Expr::IsTrue(..)
| Expr::IsFalse(..)
| Expr::IsUnknown(_)
| Expr::IsNotTrue(..)
| Expr::IsNotFalse(..)
| Expr::Placeholder { .. }
| Expr::OuterReferenceColumn(_, _)
| Expr::Unnest(_)
| Expr::IsNotUnknown(_) => RexType::Call,
Expr::ScalarSubquery(..) => RexType::ScalarSubquery,
})
}
/// Given the current `Expr` return the DataTypeMap which represents the
/// PythonType, Arrow DataType, and SqlType Enum which represents
pub fn types(&self) -> PyResult<DataTypeMap> {
Self::_types(&self.expr)
}
/// Extracts the Expr value into a PyObject that can be shared with Python
pub fn python_value(&self, py: Python) -> PyResult<PyObject> {
match &self.expr {
Expr::Literal(scalar_value) => match scalar_value {
ScalarValue::Null => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::Null".to_string(),
),
)),
ScalarValue::Boolean(v) => Ok(v.into_py(py)),
ScalarValue::Float32(v) => Ok(v.into_py(py)),
ScalarValue::Float64(v) => Ok(v.into_py(py)),
ScalarValue::Decimal128(v, _, _) => Ok(v.into_py(py)),
ScalarValue::Decimal256(_, _, _) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::Decimal256".to_string(),
),
)),
ScalarValue::Int8(v) => Ok(v.into_py(py)),
ScalarValue::Int16(v) => Ok(v.into_py(py)),
ScalarValue::Int32(v) => Ok(v.into_py(py)),
ScalarValue::Int64(v) => Ok(v.into_py(py)),
ScalarValue::UInt8(v) => Ok(v.into_py(py)),
ScalarValue::UInt16(v) => Ok(v.into_py(py)),
ScalarValue::UInt32(v) => Ok(v.into_py(py)),
ScalarValue::UInt64(v) => Ok(v.into_py(py)),
ScalarValue::Utf8(v) => Ok(v.clone().into_py(py)),
ScalarValue::LargeUtf8(v) => Ok(v.clone().into_py(py)),
ScalarValue::Binary(v) => Ok(v.clone().into_py(py)),
ScalarValue::FixedSizeBinary(_, _) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::FixedSizeBinary".to_string(),
),
)),
ScalarValue::LargeBinary(v) => Ok(v.clone().into_py(py)),
ScalarValue::List(_) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::List".to_string(),
),
)),
ScalarValue::Date32(v) => Ok(v.into_py(py)),
ScalarValue::Date64(v) => Ok(v.into_py(py)),
ScalarValue::Time32Second(v) => Ok(v.into_py(py)),
ScalarValue::Time32Millisecond(v) => Ok(v.into_py(py)),
ScalarValue::Time64Microsecond(v) => Ok(v.into_py(py)),
ScalarValue::Time64Nanosecond(v) => Ok(v.into_py(py)),
ScalarValue::TimestampSecond(v, _) => Ok(v.into_py(py)),
ScalarValue::TimestampMillisecond(v, _) => Ok(v.into_py(py)),
ScalarValue::TimestampMicrosecond(v, _) => Ok(v.into_py(py)),
ScalarValue::TimestampNanosecond(v, _) => Ok(v.into_py(py)),
ScalarValue::IntervalYearMonth(v) => Ok(v.into_py(py)),
ScalarValue::IntervalDayTime(v) => Ok(v.into_py(py)),
ScalarValue::IntervalMonthDayNano(v) => Ok(v.into_py(py)),
ScalarValue::DurationSecond(v) => Ok(v.into_py(py)),
ScalarValue::DurationMicrosecond(v) => Ok(v.into_py(py)),
ScalarValue::DurationNanosecond(v) => Ok(v.into_py(py)),
ScalarValue::DurationMillisecond(v) => Ok(v.into_py(py)),
ScalarValue::Struct(_) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::Struct".to_string(),
),
)),
ScalarValue::Dictionary(_, _) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::Dictionary".to_string(),
),
)),
ScalarValue::FixedSizeList(_) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::FixedSizeList".to_string(),
),
)),
ScalarValue::LargeList(_) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::LargeList".to_string(),
),
)),
ScalarValue::Union(_, _, _) => Err(py_datafusion_err(
datafusion_common::DataFusionError::NotImplemented(
"ScalarValue::Union".to_string(),
),
)),
},
_ => Err(py_type_err(format!(
"Non Expr::Literal encountered in types: {:?}",
&self.expr
))),
}
}
/// Row expressions, Rex(s), operate on the concept of operands. Different variants of Expressions, Expr(s),
/// store those operands in different datastructures. This function examines the Expr variant and returns
/// the operands to the calling logic as a Vec of PyExpr instances.
pub fn rex_call_operands(&self) -> PyResult<Vec<PyExpr>> {
match &self.expr {
// Expr variants that are themselves the operand to return
Expr::Column(..) | Expr::ScalarVariable(..) | Expr::Literal(..) => {
Ok(vec![PyExpr::from(self.expr.clone())])
}
Expr::Alias(alias) => Ok(vec![PyExpr::from(*alias.expr.clone())]),
// Expr(s) that house the Expr instance to return in their bounded params
Expr::Not(expr)
| Expr::IsNull(expr)
| Expr::IsNotNull(expr)
| Expr::IsTrue(expr)
| Expr::IsFalse(expr)
| Expr::IsUnknown(expr)
| Expr::IsNotTrue(expr)
| Expr::IsNotFalse(expr)
| Expr::IsNotUnknown(expr)
| Expr::Negative(expr)
| Expr::GetIndexedField(GetIndexedField { expr, .. })
| Expr::Cast(Cast { expr, .. })
| Expr::TryCast(TryCast { expr, .. })
| Expr::Sort(Sort { expr, .. })
| Expr::InSubquery(InSubquery { expr, .. }) => Ok(vec![PyExpr::from(*expr.clone())]),
// Expr variants containing a collection of Expr(s) for operands
Expr::AggregateFunction(AggregateFunction { args, .. })
| Expr::ScalarFunction(ScalarFunction { args, .. })
| Expr::WindowFunction(WindowFunction { args, .. }) => {
Ok(args.iter().map(|arg| PyExpr::from(arg.clone())).collect())
}
// Expr(s) that require more specific processing
Expr::Case(Case {
expr,
when_then_expr,
else_expr,
}) => {
let mut operands: Vec<PyExpr> = Vec::new();
if let Some(e) = expr {
for (when, then) in when_then_expr {
operands.push(PyExpr::from(Expr::BinaryExpr(BinaryExpr::new(
Box::new(*e.clone()),
Operator::Eq,
Box::new(*when.clone()),
))));
operands.push(PyExpr::from(*then.clone()));
}
} else {
for (when, then) in when_then_expr {
operands.push(PyExpr::from(*when.clone()));
operands.push(PyExpr::from(*then.clone()));
}
};
if let Some(e) = else_expr {
operands.push(PyExpr::from(*e.clone()));
};
Ok(operands)
}
Expr::InList(InList { expr, list, .. }) => {
let mut operands: Vec<PyExpr> = vec![PyExpr::from(*expr.clone())];
for list_elem in list {
operands.push(PyExpr::from(list_elem.clone()));
}
Ok(operands)
}
Expr::BinaryExpr(BinaryExpr { left, right, .. }) => Ok(vec![
PyExpr::from(*left.clone()),
PyExpr::from(*right.clone()),
]),
Expr::Like(Like { expr, pattern, .. }) => Ok(vec![
PyExpr::from(*expr.clone()),
PyExpr::from(*pattern.clone()),
]),
Expr::SimilarTo(Like { expr, pattern, .. }) => Ok(vec![
PyExpr::from(*expr.clone()),
PyExpr::from(*pattern.clone()),
]),
Expr::Between(Between {
expr,
negated: _,
low,
high,
}) => Ok(vec![
PyExpr::from(*expr.clone()),
PyExpr::from(*low.clone()),
PyExpr::from(*high.clone()),
]),
// Currently un-support/implemented Expr types for Rex Call operations
Expr::GroupingSet(..)
| Expr::Unnest(_)
| Expr::OuterReferenceColumn(_, _)
| Expr::Wildcard { .. }
| Expr::ScalarSubquery(..)
| Expr::Placeholder { .. }
| Expr::Exists { .. } => Err(py_runtime_err(format!(
"Unimplemented Expr type: {}",
self.expr
))),
}
}
/// Extracts the operator associated with a RexType::Call
pub fn rex_call_operator(&self) -> PyResult<String> {
Ok(match &self.expr {
Expr::BinaryExpr(BinaryExpr {
left: _,
op,
right: _,
}) => format!("{op}"),
Expr::ScalarFunction(ScalarFunction { func_def, args: _ }) => {
func_def.name().to_string()
}
Expr::Cast { .. } => "cast".to_string(),
Expr::Between { .. } => "between".to_string(),
Expr::Case { .. } => "case".to_string(),
Expr::IsNull(..) => "is null".to_string(),
Expr::IsNotNull(..) => "is not null".to_string(),
Expr::IsTrue(_) => "is true".to_string(),
Expr::IsFalse(_) => "is false".to_string(),
Expr::IsUnknown(_) => "is unknown".to_string(),
Expr::IsNotTrue(_) => "is not true".to_string(),
Expr::IsNotFalse(_) => "is not false".to_string(),
Expr::IsNotUnknown(_) => "is not unknown".to_string(),
Expr::InList { .. } => "in list".to_string(),
Expr::Negative(..) => "negative".to_string(),
Expr::Not(..) => "not".to_string(),
Expr::Like(Like {
negated,
case_insensitive,
..
}) => {
let name = if *case_insensitive { "ilike" } else { "like" };
if *negated {
format!("not {name}")
} else {
name.to_string()
}
}
Expr::SimilarTo(Like { negated, .. }) => {
if *negated {
"not similar to".to_string()
} else {
"similar to".to_string()
}
}
_ => {
return Err(py_type_err(format!(
"Catch all triggered in get_operator_name: {:?}",
&self.expr
)))
}
})
}
pub fn column_name(&self, plan: PyLogicalPlan) -> PyResult<String> {
self._column_name(&plan.plan()).map_err(py_runtime_err)
}
}
impl PyExpr {
pub fn _column_name(&self, plan: &LogicalPlan) -> Result<String, DataFusionError> {
let field = Self::expr_to_field(&self.expr, plan)?;
Ok(field.name().to_owned())
}
/// Create a [Field] representing an [Expr], given an input [LogicalPlan] to resolve against
pub fn expr_to_field(
expr: &Expr,
input_plan: &LogicalPlan,
) -> Result<Arc<Field>, DataFusionError> {
match expr {
Expr::Sort(Sort { expr, .. }) => {
// DataFusion does not support create_name for sort expressions (since they never
// appear in projections) so we just delegate to the contained expression instead
Self::expr_to_field(expr, input_plan)
}
Expr::Wildcard { .. } => {
// Since * could be any of the valid column names just return the first one
Ok(Arc::new(input_plan.schema().field(0).clone()))
}
_ => {
let fields =
exprlist_to_fields(&[expr.clone()], input_plan).map_err(PyErr::from)?;
Ok(fields[0].1.clone())
}
}
}
fn _types(expr: &Expr) -> PyResult<DataTypeMap> {
match expr {
Expr::BinaryExpr(BinaryExpr {
left: _,
op,
right: _,
}) => match op {
Operator::Eq
| Operator::NotEq
| Operator::Lt
| Operator::LtEq
| Operator::Gt
| Operator::GtEq
| Operator::And
| Operator::Or
| Operator::IsDistinctFrom
| Operator::IsNotDistinctFrom
| Operator::RegexMatch
| Operator::RegexIMatch
| Operator::RegexNotMatch
| Operator::RegexNotIMatch
| Operator::LikeMatch
| Operator::ILikeMatch
| Operator::NotLikeMatch
| Operator::NotILikeMatch => DataTypeMap::map_from_arrow_type(&DataType::Boolean),
Operator::Plus | Operator::Minus | Operator::Multiply | Operator::Modulo => {
DataTypeMap::map_from_arrow_type(&DataType::Int64)
}
Operator::Divide => DataTypeMap::map_from_arrow_type(&DataType::Float64),
Operator::StringConcat => DataTypeMap::map_from_arrow_type(&DataType::Utf8),
Operator::BitwiseShiftLeft
| Operator::BitwiseShiftRight
| Operator::BitwiseXor
| Operator::BitwiseAnd
| Operator::BitwiseOr => DataTypeMap::map_from_arrow_type(&DataType::Binary),
Operator::AtArrow | Operator::ArrowAt => {
Err(py_type_err(format!("Unsupported expr: ${op}")))
}
},
Expr::Cast(Cast { expr: _, data_type }) => DataTypeMap::map_from_arrow_type(data_type),
Expr::Literal(scalar_value) => DataTypeMap::map_from_scalar_value(scalar_value),
_ => Err(py_type_err(format!(
"Non Expr::Literal encountered in types: {:?}",
expr
))),
}
}
}
/// Initializes the `expr` module to match the pattern of `datafusion-expr` https://docs.rs/datafusion-expr/latest/datafusion_expr/
pub(crate) fn init_module(m: &PyModule) -> PyResult<()> {
m.add_class::<PyExpr>()?;
m.add_class::<PyColumn>()?;
m.add_class::<PyLiteral>()?;
m.add_class::<PyBinaryExpr>()?;
m.add_class::<PyLiteral>()?;
m.add_class::<PyAggregateFunction>()?;
m.add_class::<PyNot>()?;
m.add_class::<PyIsNotNull>()?;
m.add_class::<PyIsNull>()?;
m.add_class::<PyIsTrue>()?;
m.add_class::<PyIsFalse>()?;
m.add_class::<PyIsUnknown>()?;
m.add_class::<PyIsNotTrue>()?;
m.add_class::<PyIsNotFalse>()?;
m.add_class::<PyIsNotUnknown>()?;
m.add_class::<PyNegative>()?;
m.add_class::<PyLike>()?;
m.add_class::<PyILike>()?;
m.add_class::<PySimilarTo>()?;
m.add_class::<PyScalarVariable>()?;
m.add_class::<alias::PyAlias>()?;
m.add_class::<in_list::PyInList>()?;
m.add_class::<exists::PyExists>()?;
m.add_class::<subquery::PySubquery>()?;
m.add_class::<in_subquery::PyInSubquery>()?;
m.add_class::<scalar_subquery::PyScalarSubquery>()?;
m.add_class::<placeholder::PyPlaceholder>()?;
m.add_class::<grouping_set::PyGroupingSet>()?;
m.add_class::<case::PyCase>()?;
m.add_class::<cast::PyCast>()?;
m.add_class::<cast::PyTryCast>()?;
m.add_class::<between::PyBetween>()?;
m.add_class::<indexed_field::PyGetIndexedField>()?;
m.add_class::<explain::PyExplain>()?;
m.add_class::<limit::PyLimit>()?;
m.add_class::<aggregate::PyAggregate>()?;
m.add_class::<sort::PySort>()?;
m.add_class::<analyze::PyAnalyze>()?;
m.add_class::<empty_relation::PyEmptyRelation>()?;
m.add_class::<join::PyJoin>()?;
m.add_class::<join::PyJoinType>()?;
m.add_class::<join::PyJoinConstraint>()?;
m.add_class::<cross_join::PyCrossJoin>()?;
m.add_class::<union::PyUnion>()?;
m.add_class::<unnest::PyUnnest>()?;
m.add_class::<extension::PyExtension>()?;
m.add_class::<filter::PyFilter>()?;
m.add_class::<projection::PyProjection>()?;
m.add_class::<table_scan::PyTableScan>()?;
m.add_class::<create_memory_table::PyCreateMemoryTable>()?;
m.add_class::<create_view::PyCreateView>()?;
m.add_class::<distinct::PyDistinct>()?;
m.add_class::<subquery_alias::PySubqueryAlias>()?;
m.add_class::<drop_table::PyDropTable>()?;
m.add_class::<repartition::PyPartitioning>()?;
m.add_class::<repartition::PyRepartition>()?;
m.add_class::<window::PyWindow>()?;
m.add_class::<window::PyWindowFrame>()?;
m.add_class::<window::PyWindowFrameBound>()?;
Ok(())
}