-
Notifications
You must be signed in to change notification settings - Fork 8.9k
/
SingleCluster.md.vm
244 lines (153 loc) · 7.96 KB
/
SingleCluster.md.vm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
<!---
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
#set ( $H3 = '###' )
#set ( $H4 = '####' )
#set ( $H5 = '#####' )
Hadoop: Setting up a Single Node Cluster.
=========================================
<!-- MACRO{toc|fromDepth=0|toDepth=3} -->
Purpose
-------
This document describes how to set up and configure a single-node Hadoop installation so that you can quickly perform simple operations using Hadoop MapReduce and the Hadoop Distributed File System (HDFS).
*Important*: all production Hadoop clusters use Kerberos to authenticate callers
and secure access to HDFS data as well as restriction access to computation
services (YARN etc.).
These instructions do not cover integration with any Kerberos services,
-everyone bringing up a production cluster should include connecting to their
organisation's Kerberos infrastructure as a key part of the deployment.
See [Security](./SecureMode.html) for details on how to secure a cluster.
Prerequisites
-------------
$H3 Supported Platforms
* GNU/Linux is supported as a development and production platform. Hadoop has been demonstrated on GNU/Linux clusters with 2000 nodes.
$H3 Required Software
Required software for Linux include:
1. Java™ must be installed. Recommended Java versions are described at [HadoopJavaVersions](https://cwiki.apache.org/confluence/display/HADOOP/Hadoop+Java+Versions).
2. ssh must be installed and sshd must be running to use the Hadoop scripts that manage remote Hadoop daemons if the optional start and stop scripts are to be used. Additionally, it is recommmended that pdsh also be installed for better ssh resource management.
$H3 Installing Software
If your cluster doesn't have the requisite software you will need to install it.
For example on Ubuntu Linux:
$ sudo apt-get install ssh
$ sudo apt-get install pdsh
Download
--------
To get a Hadoop distribution, download a recent stable release from one of the [Apache Download Mirrors](http://www.apache.org/dyn/closer.cgi/hadoop/common/).
Prepare to Start the Hadoop Cluster
-----------------------------------
Unpack the downloaded Hadoop distribution. In the distribution, edit the file `etc/hadoop/hadoop-env.sh` to define some parameters as follows:
# set to the root of your Java installation
export JAVA_HOME=/usr/java/latest
Try the following command:
$ bin/hadoop
This will display the usage documentation for the hadoop script.
Now you are ready to start your Hadoop cluster in one of the three supported modes:
* [Local (Standalone) Mode](#Standalone_Operation)
* [Pseudo-Distributed Mode](#Pseudo-Distributed_Operation)
* [Fully-Distributed Mode](#Fully-Distributed_Operation)
Standalone Operation
--------------------
By default, Hadoop is configured to run in a non-distributed mode, as a single Java process. This is useful for debugging.
The following example copies the unpacked conf directory to use as input and then finds and displays every match of the given regular expression. Output is written to the given output directory.
$ mkdir input
$ cp etc/hadoop/*.xml input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-${project.version}.jar grep input output 'dfs[a-z.]+'
$ cat output/*
Pseudo-Distributed Operation
----------------------------
Hadoop can also be run on a single-node in a pseudo-distributed mode where each Hadoop daemon runs in a separate Java process.
$H3 Configuration
Use the following:
etc/hadoop/core-site.xml:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
etc/hadoop/hdfs-site.xml:
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
$H3 Setup passphraseless ssh
Now check that you can ssh to the localhost without a passphrase:
$ ssh localhost
If you cannot ssh to localhost without a passphrase, execute the following commands:
$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized_keys
$H3 Execution
The following instructions are to run a MapReduce job locally. If you want to execute a job on YARN, see [YARN on Single Node](#YARN_on_a_Single_Node).
1. Format the filesystem:
$ bin/hdfs namenode -format
2. Start NameNode daemon and DataNode daemon:
$ sbin/start-dfs.sh
The hadoop daemon log output is written to the `$HADOOP_LOG_DIR` directory (defaults to `$HADOOP_HOME/logs`).
3. Browse the web interface for the NameNode; by default it is available at:
* NameNode - `http://localhost:9870/`
4. Make the HDFS directories required to execute MapReduce jobs:
$ bin/hdfs dfs -mkdir -p /user/<username>
5. Copy the input files into the distributed filesystem:
$ bin/hdfs dfs -mkdir input
$ bin/hdfs dfs -put etc/hadoop/*.xml input
6. Run some of the examples provided:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-${project.version}.jar grep input output 'dfs[a-z.]+'
7. Examine the output files: Copy the output files from the distributed filesystem to the local filesystem and examine them:
$ bin/hdfs dfs -get output output
$ cat output/*
or
View the output files on the distributed filesystem:
$ bin/hdfs dfs -cat output/*
8. When you're done, stop the daemons with:
$ sbin/stop-dfs.sh
$H3 YARN on a Single Node
You can run a MapReduce job on YARN in a pseudo-distributed mode by setting a few parameters and running ResourceManager daemon and NodeManager daemon in addition.
The following instructions assume that 1. ~ 4. steps of [the above instructions](#Execution) are already executed.
1. Configure parameters as follows:
`etc/hadoop/mapred-site.xml`:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>
</property>
</configuration>
`etc/hadoop/yarn-site.xml`:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value>
</property>
</configuration>
2. Start ResourceManager daemon and NodeManager daemon:
$ sbin/start-yarn.sh
3. Browse the web interface for the ResourceManager; by default it is available at:
* ResourceManager - `http://localhost:8088/`
4. Run a MapReduce job.
5. When you're done, stop the daemons with:
$ sbin/stop-yarn.sh
Fully-Distributed Operation
---------------------------
For information on setting up fully-distributed, non-trivial clusters see [Cluster Setup](./ClusterSetup.html).
Hadoop in Docker containers
---------------------------
For information on setting up hadoop in docker, using either official releases or the main source code,
check [Hadoop Docker](./HadoopDocker.html).