-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
convolution.cc
693 lines (647 loc) · 30.1 KB
/
convolution.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file src/relay/qnn/op/convolution.cc
* \brief Property def of qnn convolution operator.
*/
#include <tvm/tir/data_layout.h>
#include <tvm/relay/analysis.h>
#include <tvm/relay/base.h>
#include <tvm/relay/op.h>
#include <tvm/relay/qnn/attrs.h>
#include <tvm/relay/transform.h>
#include "../../op/nn/convolution.h"
#include "../../pass/pattern_util.h"
#include "../util.h"
namespace tvm {
namespace relay {
namespace qnn {
// relay.op.qnn.conv2d
bool QnnConv2DRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 7);
const auto* data = types[0].as<TensorTypeNode>();
const auto* weight = types[1].as<TensorTypeNode>();
if (data == nullptr || weight == nullptr) return false;
const auto* param = attrs.as<Conv2DAttrs>();
CHECK(param != nullptr) << "Conv2DAttrs cannot be nullptr.";
CHECK(data->dtype == DataType::Int(8) || data->dtype == DataType::UInt(8))
<< "Expected qnn conv2d type(int8, uint8) for input but was " << data->dtype;
CHECK(weight->dtype == DataType::Int(8) || weight->dtype == DataType::UInt(8))
<< "Expected qnn conv2d type(int8, uint8) for weight but was " << weight->dtype;
CHECK(param->out_dtype == DataType::Int(16) || param->out_dtype == DataType::Int(32))
<< "Expected qnn conv2d type(int32, int16) for output but was " << param->out_dtype;
CHECK(param->out_dtype.bits() > 0) << "Output dtype bits should be greater than 0.";
// Check the types of scale and zero points.
CHECK(IsScalarType(types[2], DataType::Int(32))); // input_zero_point
CHECK(IsScalarType(types[3], DataType::Int(32))); // kernel_zero_point
CHECK(IsScalarType(types[4], DataType::Float(32))); // input_scale
// Kernel scale can be a vector of length output_channels or a scalar.
size_t axis = param->kernel_layout.find('O');
CHECK(axis != std::string::npos) << "Kernel layout attribute is not defined";
AssignType(types[5], DataType::Float(32), weight->shape[axis], reporter); // kernel scale
// Collect the input tensor and output tensor devoid of scale and zero points to reuse Relay
// Conv2D infer type function.
Array<Type> tensor_types = {types[0], types[1], types[6]};
return Conv2DRel<Conv2DAttrs>(tensor_types, 3, attrs, reporter);
}
bool is_depthwise(const Conv2DAttrs* param) {
return param->channels.defined() && tvm::tir::Equal(param->channels, param->groups) &&
param->groups != 1;
}
// Workload - batch_size, in_channels, out_channels, kernel_h, kernel_w, channel_multiplier
using WorkloadType = std::tuple<int, int, int, int, int, int>;
/*
* \brief Get the conv parameters like batch_size, kernel_height etc.
* \param ref_call The original callnode.
* \param param The qnn conv2d attributes.
* \return A tuple of workload.
*/
WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const Conv2DAttrs* param) {
// Get conv parameters.
const auto in_shape = get_shape(arg_types[0]);
int batch_size, in_channels;
if (param->data_layout == "NCHW") {
batch_size = get_const_int(in_shape[0]);
in_channels = get_const_int(in_shape[1]);
} else if (param->data_layout == "NHWC") {
batch_size = get_const_int(in_shape[0]);
in_channels = get_const_int(in_shape[3]);
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
const auto kernel_shape = get_shape(arg_types[1]);
int out_channels, kernel_h, kernel_w;
int channel_multiplier = -1;
bool depthwise = is_depthwise(param);
if (param->kernel_layout == "OIHW") {
out_channels = get_const_int(kernel_shape[0]);
kernel_h = get_const_int(kernel_shape[2]);
kernel_w = get_const_int(kernel_shape[3]);
if (depthwise) {
channel_multiplier = get_const_int(kernel_shape[1]);
}
} else if (param->kernel_layout == "HWIO") {
kernel_h = get_const_int(kernel_shape[0]);
kernel_w = get_const_int(kernel_shape[1]);
out_channels = get_const_int(kernel_shape[3]);
if (depthwise) {
channel_multiplier = get_const_int(kernel_shape[2]);
}
} else if (param->kernel_layout == "HWOI") {
kernel_h = get_const_int(kernel_shape[0]);
kernel_w = get_const_int(kernel_shape[1]);
out_channels = get_const_int(kernel_shape[2]);
if (depthwise) {
channel_multiplier = get_const_int(kernel_shape[3]);
}
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->kernel_layout << " layout";
}
return std::make_tuple(batch_size, in_channels, out_channels, kernel_h, kernel_w,
channel_multiplier);
}
/*
* \brief Fallback to simpler lowering for dilation (when non-zero kernel point) or grouped conv.
* \param data The input expr.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \return The fallback lowered sequence of Relay expr.
* \note In case of dilation with non-zero kernel zero point, normal lowering would require a
* dilated pool. Since, we don't have dilated pool, we fallback to a simpler sequence of Relay
* operations. This will potentially lead to performance degradation as the convolution is called on
* int32 tensors instead of int8 tensors.
*/
Expr Conv2DFallBack(const Expr& data, const Expr& weight, const Expr& input_zero_point,
const Expr& kernel_zero_point, const Conv2DAttrs* param) {
// Upcast the zero point to Int16.
auto zp_data = Cast(input_zero_point, DataType::Int(16));
auto zp_kernel = Cast(kernel_zero_point, DataType::Int(16));
auto shifted_data = Cast(data, DataType::Int(16));
auto zero_scalar = MakeConstantScalar(DataType::Int(32), 0);
if (!IsEqualScalar(input_zero_point, zero_scalar)) {
shifted_data = Subtract(Cast(data, DataType::Int(16)), zp_data);
}
auto shifted_kernel = Cast(weight, DataType::Int(16));
if (!IsEqualScalar(kernel_zero_point, zero_scalar)) {
shifted_kernel = Subtract(Cast(weight, DataType::Int(16)), zp_kernel);
}
return Conv2D(shifted_data, shifted_kernel, param->strides, param->padding, param->dilation,
param->groups, param->channels, param->kernel_size, param->data_layout,
param->kernel_layout, param->out_layout, param->out_dtype);
}
/*
* \brief Pad the input data.
* \param data The input expr.
* \param input_zero_point The input zero point expr.
* \return The padded input expr.
* \note For quantized convolution, the input has to be padded with zero point
* instead of zero. This might lead to performance degradation as pad
* cannot be fused with conv in Relay. In case we see performance
* degradation, we can change the conv2D API to accept a pad_const value.
*/
Expr Conv2DPadInput(const Expr& data, const Expr& input_zero_point, const Conv2DAttrs* param) {
// 1) Pad the input data
auto padded_data = data;
auto pad_top_value = get_const_int(param->padding[0]);
auto pad_left_value = get_const_int(param->padding[1]);
auto pad_bottom_value = get_const_int(param->padding[2]);
auto pad_right_value = get_const_int(param->padding[3]);
bool do_pad = pad_top_value != 0 || pad_left_value != 0 ||
pad_bottom_value != 0 || pad_right_value != 0;
if (do_pad) {
Array<IndexExpr> pad_n({0, 0});
Array<IndexExpr> pad_c({0, 0});
Array<IndexExpr> pad_h({param->padding[0], param->padding[2]});
Array<IndexExpr> pad_w({param->padding[1], param->padding[3]});
Array<Array<IndexExpr>> pad_width;
if (param->data_layout == "NCHW") {
pad_width = {pad_n, pad_c, pad_h, pad_w};
} else if (param->data_layout == "NHWC") {
pad_width = {pad_n, pad_h, pad_w, pad_c};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
auto pad_value = GetScalarFromConstant<int>(input_zero_point);
padded_data = Pad(data, pad_width, pad_value, "constant");
}
return padded_data;
}
/*
* \brief Calculates the second term in the qnn.conv2d depthwise lowering sequence.
* \param padded_data The padded data expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \param channel_multiplier The channel/depth multiplier.
* \return The sequence of Relay operators for term2.
* \note The term2 looks like this
*
* Sigma(r, s) zp_w * Qa(n, oc/cm, oh + r, ow + s)
*
* Second term is not directly representable by one Relay operator.
* However, deeper analysis shows that we can reduce r,s using avg_pool2d,
* followed by repeat on the C axis by cm times.
*/
Expr DepthwiseConv2DSecondTerm(const Expr& padded_data, const Expr& kernel_zero_point,
const Conv2DAttrs* param, int kernel_h, int kernel_w,
int channel_multiplier) {
auto casted_t2 = Cast(padded_data, DataType::Int(32));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
// Since, this is integer division (floor), we can first multiply the data by the pool_size and
// then perform avg_pool2d. Reversing this causes inaccuracy due to floor division. If the
// pool_size is 1x1, we don't need avg_pool2d.
auto reduced_t2 = casted_t2;
if (kernel_h * kernel_w != 1) {
auto scaled_hw_t2 =
Multiply(casted_t2, MakeConstantScalar(DataType::Int(32), kernel_h * kernel_w));
Array<IndexExpr> padding({0, 0});
reduced_t2 =
AvgPool2D(scaled_hw_t2, param->kernel_size, param->strides, padding, param->data_layout,
false, // ceil_mode
false); // count_include_pad
}
auto multiplied_t2 = reduced_t2;
auto one_scalar = MakeConstantScalar(DataType::Int(32), 1);
if (!IsEqualScalar(kernel_zero_point, one_scalar)) {
multiplied_t2 = Multiply(kernel_zero_point, reduced_t2);
}
// Reduce the C dimension. Find the dimension.
int axis_t2 = 0;
if (param->data_layout == "NCHW") {
axis_t2 = 1;
} else if (param->data_layout == "NHWC") {
axis_t2 = 3;
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
auto repeated_t2 = multiplied_t2;
if (channel_multiplier != 1) {
repeated_t2 = MakeRepeat(multiplied_t2, channel_multiplier, axis_t2);
}
return repeated_t2;
}
/*
* \brief Calculates the third term in the qnn.conv2d depthwise lowering sequence.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param param The qnn conv2d attributes.
* \param out_channels The number of output channels.
* \param channel_multiplier The channel/depth multiplier.
* \return The sequence of Relay operatos for term3.
* \note The term3 looks like this
*
* Sigma(r, s) zp_a * Qw(oc/m, oc%m, r, s)
*
* This can be achieved by calling reduce on r and s axis. The tensor can be then reshaped to
* (1, oc, 1, 1) as (oc/m, oc%m) are just contiguous memory locations.
*/
Expr DepthwiseConv2DThirdTerm(const Expr& weight, const Expr& input_zero_point,
const Conv2DAttrs* param, int out_channels, int channel_multiplier) {
// Find which dimensions are R, S.
Array<Integer> axes_t3;
if (param->kernel_layout == "OIHW") {
// For OIHW kernel layout, HW are reduce axis
axes_t3 = {2, 3};
} else if (param->kernel_layout == "HWIO") {
axes_t3 = {0, 1};
} else if (param->kernel_layout == "HWOI") {
axes_t3 = {0, 1};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->kernel_layout << " layout";
}
auto reduced_t3 = Sum(Cast(weight, DataType::Int(32)), axes_t3, false, false);
// Find the newshape depending on NCHW/NHWC layout.
Array<Integer> newshape;
if (param->data_layout == "NCHW") {
newshape = {1, out_channels * channel_multiplier, 1, 1};
} else if (param->data_layout == "NHWC") {
newshape = {1, 1, 1, out_channels * channel_multiplier};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
auto reshaped_t3 = Reshape(reduced_t3, newshape);
auto one_scalar = MakeConstantScalar(DataType::Int(32), 1);
if (IsEqualScalar(input_zero_point, one_scalar)) {
return reshaped_t3;
}
return Multiply(input_zero_point, reshaped_t3);
}
/*
* \brief Calculates the fourth term in the qnn.conv2d depthwise lowering sequence.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operators for term4.
* \note The term4 looks like this
*
* Sigma(r, s) zp_a * zp_w
*/
Expr DepthwiseConv2DFourthTerm(int input_zero_point_int, int kernel_zero_point_int, int kernel_h,
int kernel_w) {
int scalar_term4 = input_zero_point_int * kernel_zero_point_int * kernel_h * kernel_w;
return MakeConstantScalar(DataType::Int(32), scalar_term4);
}
/*
* \brief Calculates the first term in the qnn.conv2d lowering sequence.
* \param data The input expr.
* \param weight The weight expr.
* \param param The qnn conv2d attributes.
* \return The sequence of Relay operators for term1.
* \note The term1 is
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s)
* This is just conv2d on int tensors.
*/
Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const Conv2DAttrs* param) {
// Lowering for Term 1
Array<IndexExpr> padding({0, 0, 0, 0});
return Conv2D(padded_data, weight, param->strides, padding, param->dilation, param->groups,
param->channels, param->kernel_size, param->data_layout, param->kernel_layout,
param->out_layout, param->out_dtype);
}
/*
* \brief Calculates the second term in the qnn.conv2d lowering sequence.
* \param padded_data The padded data expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operators for term2.
* \note The term2 looks like this
*
* Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s)
*
* Second term is not directly representable by one Relay operator.
* However, deeper analysis shows that we can reduce r,s using avg_pool2d,
* followed by a reduce on the C axis. Using avg_pool2d also gives an
* opportunity to reuse alter_op_layout infrastructure.
*/
Expr Conv2DSecondTerm(const Expr& padded_data, const Expr& kernel_zero_point,
const Conv2DAttrs* param, int kernel_h, int kernel_w, int out_channels) {
auto casted_t2 = Cast(padded_data, DataType::Int(32));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
// Since, this is integer division (floor), we can first multiply the data by the pool_size and
// then perform avg_pool2d. Reversing this causes inaccuracy due to floor division.
Array<IndexExpr> padding({0, 0});
// Reduce the C dimension. Find the dimension.
Array<Integer> axes_t2;
if (param->data_layout == "NCHW") {
axes_t2 = {1};
} else if (param->data_layout == "NHWC") {
axes_t2 = {3};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
// Keep dims true to retain 4D tensor
auto reduced_c_t2 = Sum(casted_t2, axes_t2, true, false);
// If the pool_size is 1x1, we don't need avg_pool2d.
auto reduced_t2 = reduced_c_t2;
if (kernel_h * kernel_w != 1) {
reduced_c_t2 =
Multiply(reduced_c_t2, MakeConstantScalar(DataType::Int(32), kernel_h * kernel_w));
reduced_t2 =
AvgPool2D(reduced_c_t2, param->kernel_size, param->strides, padding, param->data_layout,
false, // ceil_mode
false); // count_include_pad
}
auto multiplied_t2 = reduced_t2;
auto one_scalar = MakeConstantScalar(DataType::Int(32), 1);
if (!IsEqualScalar(kernel_zero_point, one_scalar)) {
multiplied_t2 = Multiply(kernel_zero_point, reduced_t2);
}
return multiplied_t2;
}
/*
* \brief Calculates the third term in the qnn.conv2d lowering sequence.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param param The qnn conv2d attributes.
* \param out_channels The number of output channels.
* \return The sequence of Relay operatos for term3.
* \note The term3 looks like this
*
* Sigma(c,r,s) zp_a * QW(k, c, r, s)
*
* This can be achieved by calling reduce on c, r and s axis, resulting in
* a 1D tensor. The tensor is then reshaped to conform to NHWC/NCHW
* format.
*/
Expr Conv2DThirdTerm(const Expr& weight, const Expr& input_zero_point, const Conv2DAttrs* param,
int out_channels) {
// Find which dimensions are C, R, S.
Array<Integer> axes_t3;
if (param->kernel_layout == "OIHW") {
// For OIHW kernel layout, IHW are reduce axis
axes_t3 = {1, 2, 3};
} else if (param->kernel_layout == "HWIO") {
axes_t3 = {0, 1, 2};
} else if (param->kernel_layout == "HWOI") {
axes_t3 = {0, 1, 3};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->kernel_layout << " layout";
}
auto reduced_t3 = Sum(Cast(weight, DataType::Int(32)), axes_t3, false, false);
// Find the newshape depending on NCHW/NHWC layout.
Array<Integer> newshape;
if (param->data_layout == "NCHW") {
newshape = {1, out_channels, 1, 1};
} else if (param->data_layout == "NHWC") {
newshape = {1, 1, 1, out_channels};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
auto reshaped_t3 = Reshape(reduced_t3, newshape);
auto one_scalar = MakeConstantScalar(DataType::Int(32), 1);
if (IsEqualScalar(input_zero_point, one_scalar)) {
return reshaped_t3;
}
return Multiply(input_zero_point, reshaped_t3);
}
/*
* \brief Calculates the fourth term in the qnn.conv2d lowering sequence.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param in_channels The number of input channels.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operators for term4.
* \note The term4 looks like this
*
* Sigma(c,r,s) zp_a * zp_w
*
*/
Expr Conv2DFourthTerm(int input_zero_point_int, int kernel_zero_point_int, int in_channels,
int kernel_h, int kernel_w) {
int scalar_term4 =
input_zero_point_int * kernel_zero_point_int * in_channels * kernel_h * kernel_w;
return MakeConstantScalar(DataType::Int(32), scalar_term4);
}
/*
* \brief Combines different terms of qnn conv2d lowering.
* \param term1 The term1 of qnn conv2d lowering.
* \param term2 The term2 of qnn conv2d lowering.
* \param term3 The term3 of qnn conv2d lowering.
* \param term4 The term4 of qnn conv2d lowering.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param param The qnn conv2d attributes.
* \return The combined sequence of relay operations.
* \note The combined operation looks like this
*
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s) // Term1
* - Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s) // Term2
* - Sigma(c,r,s) zp_a * QW(k, c, r, s) // Term3
* + Sigma(c,r,s) zp_a * zp_w // Term4
*
*/
Expr Conv2DCombineTerms(const Expr& term1, const Expr& term2, const Expr& term3, const Expr& term4,
int input_zero_point_int, int kernel_zero_point_int) {
if (input_zero_point_int == 0 && kernel_zero_point_int == 0) {
// term 2, 3 and 4 become zero.
return term1;
} else if (input_zero_point_int == 0 && kernel_zero_point_int != 0) {
// term 3 and term 4 become zero.
return Subtract(term1, term2);
} else if (input_zero_point_int != 0 && kernel_zero_point_int == 0) {
// term 2 and term 4 become zero.
return Subtract(term1, term3);
} else {
auto data_term = Subtract(term1, term2);
// Putting constant terms together, so that constant folding can fold it.
auto const_term = Subtract(term4, term3);
return Add(data_term, const_term);
}
}
/*
* \brief Forward rewrite the qnn conv2d op.
* \param attrs The QNN conv2d attrs.
* \param new_args The new mutated args to the call node.
* \param arg_types The types of input and output.
* \return The sequence of Relay ops for qnn cov2d op.
* \node Lowering of the qnn.conv2d operator
* A quantized tensor is represented in following manner
* A = scale_a x (QA - zp_A)
* where QA is quantized tensor, scale_a and zp_A are quantizations
* params.
*
* Quantized convolution will convolve two quantized tensors and returns a
* quantized tensor of default dtype of int32, with scale equaling to the
* product of scales of input tensors, and a zero point of zero.
*
* For symmetric quantization, the zp_* for all tensors is 0. So, the
* lowering of qnn.conv2d is
*
* QA(n, ic, oh + r, ow + s) (conv) QW(oc, ic, r, s)
*
* For asymmetric computation, we can perform similar unrolling. We can
* find more details at
* https://discuss.tvm.ai/t/tf-lite-quantized-conv2d-operator-conversion/2651/8?u=janimesh
* The computation gets unrolled into following 4 terms
*
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s) // Term1
* - Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s) // Term2
* - Sigma(c,r,s) zp_a * QW(k, c, r, s) // Term3
* + Sigma(c,r,s) zp_a * zp_w // Term4
*
* Term3 and Term4 can be computed at compile time.
*
* Key points to notice:
* 1) Padding is done explicitly because the input has to be padded with
* zero point. This might leave some performance opportunity at the
* table. Can be avoided by modifying conv2d API to accept the
* pad_const_value.
* 2) Second term is not directly representable by one Relay operator.
* However, deeper analysis shows that we can reduce r,s using
* avg_pool2d, followed by a reduce on the C axis. Using avg_pool2d also
* gives an opportunity to reuse alter_op_layout infrastructure.
* 3) For dilated conv, in current lowering, we need dilated pool. So as
* a workaround, we fall back to simpler lowering using int32 conv if
* the conv is dilated. We fallback also in case of grouped conv.
*
* For depthwise, we can similarly unroll the computation. The intial compute is as follows
* wehere cm = channel_multiplier
*
* Qc(n, oc, oh, ow) = Sigma(r, s) (Qw(oc/m, oc%/m, r, s) - zp_w)
* * (Qa(n, oc/cm, oh + r, ow + s) - zp_a)
*
* This can be written as
*
* Sigma(r, s) Qw(oc/m, oc%/m, r, s) * Qa(n, oc/cm, oh + r, ow + s)
* - Sigma(r, s) zp_w * Qa(n, oc/cm, oh + r, ow + s)
* - Sigma(r, s) zp_a * Qw(oc/m, oc%m, r, s)
* - Sigma(r, s) zp_a * zp_w
*
* The whole process can be broken down into following steps
* * Assertion checks for existing support, fallback if necessary
* * Pad the input.
* * Get Term1.
* * Get Term2.
* * Get Term3.
* * Get Term4.
* * Combine the terms.
*/
Expr QnnConv2DCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 6);
Expr data = new_args[0];
Expr weight = new_args[1];
Expr input_zero_point = new_args[2];
Expr kernel_zero_point = new_args[3];
const auto* param = attrs.as<Conv2DAttrs>();
CHECK(param != nullptr);
// Assertion checks for exisiing support.
CHECK(param->data_layout == "NCHW" || param->data_layout == "NHWC")
<< "qnn.conv2d supports only NCHW/NHWC input data layout.";
CHECK(param->kernel_layout == "OIHW" || param->kernel_layout == "HWIO" ||
param->kernel_layout == "HWOI")
<< "qnn.conv2d supports only OIHW/HWIO/HWOI kernel data layout.";
int batch_size, in_channels, out_channels, kernel_h, kernel_w, channel_multiplier;
std::tie(batch_size, in_channels, out_channels, kernel_h, kernel_w, channel_multiplier) =
GetWorkload(arg_types, param);
// Extract the integer zero points.
auto input_zero_point_int = GetScalarFromConstant<int>(input_zero_point);
auto kernel_zero_point_int = GetScalarFromConstant<int>(kernel_zero_point);
// Fallback to int32 conv if there is dilation with non-zero kernel point or grouped conv2d
// For dilated conv, if the kernel zero point is non-zero, the pooling operator also has to
// traverse the elements in dilated manner. Currently, we do not have strided pool. So, in case of
// dilated conv with non-zero kernel point, we fall back to simpler but slow lowering.
CHECK_EQ(param->dilation.size(), 2) << "qnn.conv2d only supports 2D dilation";
auto dilation_h = get_const_int(param->dilation[0]);
auto dilation_w = get_const_int(param->dilation[1]);
if ((kernel_zero_point_int != 0 && (dilation_h != 1 || dilation_w != 1)) ||
(param->groups != 1 && !is_depthwise(param))) {
return Conv2DFallBack(data, weight, input_zero_point, kernel_zero_point, param);
} else if (is_depthwise(param)) {
CHECK_NE(channel_multiplier, -1);
auto padded_data = Conv2DPadInput(data, input_zero_point, param);
auto term1 = Conv2DFirstTerm(padded_data, weight, param);
auto term2 = DepthwiseConv2DSecondTerm(padded_data, kernel_zero_point, param, kernel_h,
kernel_w, channel_multiplier);
auto term3 =
DepthwiseConv2DThirdTerm(weight, input_zero_point, param, out_channels, channel_multiplier);
auto term4 =
DepthwiseConv2DFourthTerm(input_zero_point_int, kernel_zero_point_int, kernel_h, kernel_w);
return Conv2DCombineTerms(term1, term2, term3, term4, input_zero_point_int,
kernel_zero_point_int);
}
auto padded_data = Conv2DPadInput(data, input_zero_point, param);
auto term1 = Conv2DFirstTerm(padded_data, weight, param);
auto term2 =
Conv2DSecondTerm(padded_data, kernel_zero_point, param, kernel_h, kernel_w, out_channels);
auto term3 = Conv2DThirdTerm(weight, input_zero_point, param, out_channels);
auto term4 = Conv2DFourthTerm(input_zero_point_int, kernel_zero_point_int, in_channels, kernel_h,
kernel_w);
return Conv2DCombineTerms(term1, term2, term3, term4, input_zero_point_int,
kernel_zero_point_int);
}
// Positional relay function to create quantized conv2d operator
// used by frontend FFI.
Expr MakeQnnConv2D(Expr data, Expr weight, Expr input_zero_point, Expr kernel_zero_point,
Expr input_scale, Expr kernel_scale, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int groups,
IndexExpr channels, Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype) {
auto attrs = make_object<Conv2DAttrs>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
static const Op& op = Op::Get("qnn.conv2d");
return CallNode::make(
op, {data, weight, input_zero_point, kernel_zero_point, input_scale, kernel_scale},
Attrs(attrs), {});
}
RELAY_REGISTER_OP("qnn.conv2d")
.describe(R"code(2D quantized convolution layer.
This operator convolves quantized weight with quantized data. The scale of the
output quantized tensor is the product of the weight_scale and input_scale of
the input quantized tensors. The zero point of the output quantized tensor is
0. By default, the dtype of output is int32. Please also refer to Requantize
operator to understand how to scale back the int32 output to (u)int8.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, in_channels, height, width) if `layout` is `NCHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1])
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
)code" TVM_ADD_FILELINE)
.set_attrs_type<Conv2DAttrs>()
.set_num_inputs(6)
.add_argument("data", "Tensor", "The quantized input data tensor.")
.add_argument("weight", "Tensor", "The quantized weight tensor.")
.add_argument("input_scale", "Tensor", "The quantization scale of the input tensor.")
.add_argument("input_zero_point", "Tensor", "The quantization zero_point of the input tensor.")
.add_argument("weight_scale", "Tensor", "The quantization scale of the weight tensor.")
.add_argument("weight_zero_point", "Tensor", "The quantization zero_point of the weight tensor.")
.set_support_level(11)
.add_type_rel("QnnConv2D", QnnConv2DRel)
.set_attr<FTVMLegalize>("FTVMQnnCanonicalize", QnnConv2DCanonicalize);
TVM_REGISTER_GLOBAL("relay.qnn.op._make.conv2d").set_body_typed(MakeQnnConv2D);
} // namespace qnn
} // namespace relay
} // namespace tvm