You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
test_numpy_op.py:test_np_mixed_precision_binary_funcs randomly failed due to assertion error, and can be reproduced by test seed.
Test command:
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s test_numpy_op.py:test_np_mixed_precision_binary_funcs
Error Message
test_numpy_op.test_np_mixed_precision_binary_funcs ... [INFO] Setting test np/mx/python random seeds, use MXNET_TEST_SEED=445183722 to reproduce.
*** Maximum errors for vector of size 6: rtol=0.01, atol=0.001
Traceback (most recent call last):
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/nose/case.py", line 197, in runTest
self.test(*self.arg)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/common.py", line 223, in test_new
orig_test(*args, **kwargs)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/util.py", line 297, in _with_np_shape
return func(*args, **kwargs)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/util.py", line 481, in _with_np_array
return func(*args, **kwargs)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/test_numpy_op.py", line 2655, in test_np_mixed_precision_binary_funcs
check_mixed_precision_binary_func(func, low, high, lshape, rshape, lgrad, rgrad, type1, type2)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/test_numpy_op.py", line 2595, in check_mixed_precision_binary_func
use_broadcast=False, equal_nan=True)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/test_utils.py", line 637, in assert_almost_equal
raise AssertionError(msg)
AssertionError:
Error 1.470077 exceeds tolerance rtol=1.000000e-02, atol=1.000000e-03 (mismatch 16.666667%).
Location of maximum error: (1, 1), a=0.02921580, b=0.02734375
ACTUAL: array([[2.87304688, 1.95996094, 1.35742188],
[3.35351562, 0.0292158 , 3.74609375]])
DESIRED: array([[2.87304688, 1.95996094, 1.35742188],
[3.35351562, 0.02734375, 3.74609375]])
-------------------- >> begin captured logging << --------------------
common: INFO: Setting test np/mx/python random seeds, use MXNET_TEST_SEED=445183722 to reproduce.
root: INFO: NumPy-shape semantics has been activated in your code. This is required for creating and manipulating scalar and zero-size tensors, which were not supported in MXNet before, as in the official NumPy library. Please DO NOT manually deactivate this semantics while using mxnet.numpy and mxnet.numpy_extension modules.
--------------------- >> end captured logging << ---------------------
Ran 1 test in 2.560s
FAILED (failures=1)
To Reproduce
Test command:
build with latest commit on master branch and run with the below commands:
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s
Steps to reproduce
(Paste the commands you ran that produced the error.)
Build with mkl and install mxnet
make -j USE_MKLDNN=1 USE_OPENCV=1 USE_BLAS=mkl USE_GPERFTOOLS=0 USE_INTEL_PATH=/opt/intel/
Run with the below command:
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s test_numpy_op.py:test_np_mixed_precision_binary_funcs
Environment
Centos7.6
python3.6.8
GCC7.3.1
cmake:3.14.0
CPU
The text was updated successfully, but these errors were encountered:
Description
test_numpy_op.py:test_np_mixed_precision_binary_funcs randomly failed due to assertion error, and can be reproduced by test seed.
Test command:
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s test_numpy_op.py:test_np_mixed_precision_binary_funcs
Error Message
test_numpy_op.test_np_mixed_precision_binary_funcs ... [INFO] Setting test np/mx/python random seeds, use MXNET_TEST_SEED=445183722 to reproduce.
*** Maximum errors for vector of size 6: rtol=0.01, atol=0.001
1: Error 1.470077 Location of error: (1, 1), a=0.02921580, b=0.02734375
FAIL
======================================================================
FAIL: test_numpy_op.test_np_mixed_precision_binary_funcs
Traceback (most recent call last):
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/nose/case.py", line 197, in runTest
self.test(*self.arg)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/common.py", line 223, in test_new
orig_test(*args, **kwargs)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/util.py", line 297, in _with_np_shape
return func(*args, **kwargs)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/util.py", line 481, in _with_np_array
return func(*args, **kwargs)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/test_numpy_op.py", line 2655, in test_np_mixed_precision_binary_funcs
check_mixed_precision_binary_func(func, low, high, lshape, rshape, lgrad, rgrad, type1, type2)
File "/home/mxnet/workspace/source/incubator-mxnet/tests/python/unittest/test_numpy_op.py", line 2595, in check_mixed_precision_binary_func
use_broadcast=False, equal_nan=True)
File "/home/mxnet/anacondaenv/anaconda3_mxnet/envs/mxnet_daily_py3/lib/python3.6/site-packages/mxnet-2.0.0-py3.6.egg/mxnet/test_utils.py", line 637, in assert_almost_equal
raise AssertionError(msg)
AssertionError:
Error 1.470077 exceeds tolerance rtol=1.000000e-02, atol=1.000000e-03 (mismatch 16.666667%).
Location of maximum error: (1, 1), a=0.02921580, b=0.02734375
ACTUAL: array([[2.87304688, 1.95996094, 1.35742188],
[3.35351562, 0.0292158 , 3.74609375]])
DESIRED: array([[2.87304688, 1.95996094, 1.35742188],
[3.35351562, 0.02734375, 3.74609375]])
-------------------- >> begin captured logging << --------------------
common: INFO: Setting test np/mx/python random seeds, use MXNET_TEST_SEED=445183722 to reproduce.
root: INFO: NumPy-shape semantics has been activated in your code. This is required for creating and manipulating scalar and zero-size tensors, which were not supported in MXNet before, as in the official NumPy library. Please DO NOT manually deactivate this semantics while using
mxnet.numpy
andmxnet.numpy_extension
modules.--------------------- >> end captured logging << ---------------------
Ran 1 test in 2.560s
FAILED (failures=1)
To Reproduce
Test command:
build with latest commit on master branch and run with the below commands:
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s
Steps to reproduce
(Paste the commands you ran that produced the error.)
make -j USE_MKLDNN=1 USE_OPENCV=1 USE_BLAS=mkl USE_GPERFTOOLS=0 USE_INTEL_PATH=/opt/intel/
cd tests/python/unittest/
MXNET_TEST_SEED=445183722 nosetests -v -s test_numpy_op.py:test_np_mixed_precision_binary_funcs
Environment
Centos7.6
python3.6.8
GCC7.3.1
cmake:3.14.0
CPU
The text was updated successfully, but these errors were encountered: