@@ -37,8 +37,8 @@ def uniformRDD(sc, size, numPartitions=None, seed=None):
3737 Generates an RDD comprised of i.i.d. samples from the
3838 uniform distribution on [0.0, 1.0].
3939
40- To transform the distribution in the generated RDD from U[ 0.0, 1.0]
41- to U[ a, b] , use
40+ To transform the distribution in the generated RDD from U( 0.0, 1.0)
41+ to U( a, b) , use
4242 C{RandomRDDs.uniformRDD(sc, n, p, seed)\
4343 .map(lambda v: a + (b - a) * v)}
4444
@@ -60,11 +60,11 @@ def uniformRDD(sc, size, numPartitions=None, seed=None):
6060 @staticmethod
6161 def normalRDD (sc , size , numPartitions = None , seed = None ):
6262 """
63- Generates an RDD comprised of i.i.d samples from the standard normal
63+ Generates an RDD comprised of i.i.d. samples from the standard normal
6464 distribution.
6565
6666 To transform the distribution in the generated RDD from standard normal
67- to some other normal N(mean, sigma), use
67+ to some other normal N(mean, sigma^2 ), use
6868 C{RandomRDDs.normal(sc, n, p, seed)\
6969 .map(lambda v: mean + sigma * v)}
7070
@@ -84,7 +84,7 @@ def normalRDD(sc, size, numPartitions=None, seed=None):
8484 @staticmethod
8585 def poissonRDD (sc , mean , size , numPartitions = None , seed = None ):
8686 """
87- Generates an RDD comprised of i.i.d samples from the Poisson
87+ Generates an RDD comprised of i.i.d. samples from the Poisson
8888 distribution with the input mean.
8989
9090 >>> mean = 100.0
@@ -105,8 +105,8 @@ def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
105105 @staticmethod
106106 def uniformVectorRDD (sc , numRows , numCols , numPartitions = None , seed = None ):
107107 """
108- Generates an RDD comprised of vectors containing i.i.d samples drawn
109- from the uniform distribution on [ 0.0 1.0] .
108+ Generates an RDD comprised of vectors containing i.i.d. samples drawn
109+ from the uniform distribution U( 0.0 1.0) .
110110
111111 >>> import numpy as np
112112 >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
@@ -125,7 +125,7 @@ def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
125125 @staticmethod
126126 def normalVectorRDD (sc , numRows , numCols , numPartitions = None , seed = None ):
127127 """
128- Generates an RDD comprised of vectors containing i.i.d samples drawn
128+ Generates an RDD comprised of vectors containing i.i.d. samples drawn
129129 from the standard normal distribution.
130130
131131 >>> import numpy as np
@@ -145,7 +145,7 @@ def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
145145 @staticmethod
146146 def poissonVectorRDD (sc , mean , numRows , numCols , numPartitions = None , seed = None ):
147147 """
148- Generates an RDD comprised of vectors containing i.i.d samples drawn
148+ Generates an RDD comprised of vectors containing i.i.d. samples drawn
149149 from the Poisson distribution with the input mean.
150150
151151 >>> import numpy as np
0 commit comments