-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEdge Detection.py
342 lines (253 loc) · 12.3 KB
/
Edge Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import sys
import time
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pywt
import scipy
from scipy import ndimage
from scipy import signal
from math import sqrt
import os
from os import walk
# Utility function for an Orthogonal wavelet filter set
# clone of the matlab function
# reference https://github.com/gnattar/main/blob/master/universal/helper_funcs/wavelettool/orthfilt.m
def orthfilt(W):
w = W/sum(W)
# Associated filters
#LO_D = decomposition low-pass filter
#HI_D = decomposition high-pass filter
#LO_R = reconstruction low-pass filter
#HI_R = reconstruction high-pass filter.
LoF_R = sqrt(2)*w
HiF_R = scipy.signal.qmf(LoF_R)
HiF_D = HiF_R[::-1]
LoF_D = LoF_R[::-1]
return [LoF_D,HiF_D,LoF_R,HiF_R]
# utility function to display image
def imshow(title,image):
plt.figure(figsize=(20,10))
plt.suptitle(title)
directory = os.path.dirname(os.path.realpath('Edge\ Detection.py'))
filename = title+'.png'
savepath = os.path.join(directory,'Output',filename)
plt.imshow(image,cmap= cm.Greys_r)
plt.savefig(savepath)
plt.axis('off')
plt.close()
# Function to add gaussian noise to image
def gaussian_noise(image,sigma):
row,col= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col))
gauss = gauss.reshape(row,col)
noisy = image + gauss
return noisy
# Function to add Salt and pepper noise to image
def sp_noise(image,prob):
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = np.random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = image[i][j]
return output
# Do wavelet_transform
def wavelet_transform(img,l,h):
#Level-1
app_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((img.shape[0],1)),img],l,axis=1,mode='constant')
app_v = scipy.ndimage.filters.convolve1d(app_h,l,axis=0,mode='constant')
app = app_v[:,1:]
H_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((img.shape[0],1)),img],h,axis=1,mode='constant')
H_v = scipy.ndimage.filters.convolve1d(H_h,l,axis=0,mode='constant')
H = H_v[:,1:]
V_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((img.shape[0],1)),img],l,axis=1,mode='constant')
V_v = scipy.ndimage.filters.convolve1d(V_h,h,axis=0,mode='constant')
V = V_v[:,1:]
D_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((img.shape[0],1)),img],h,axis=1,mode='constant')
D_v = scipy.ndimage.filters.convolve1d(D_h,h,axis=0,mode='constant')
D = D_v[:,1:]
scale_down = img.shape[0]/2
apps = cv2.resize(app, (scale_down,scale_down))
Hs = cv2.resize(H,(scale_down,scale_down))
Vs = cv2.resize(V, (scale_down,scale_down))
Ds = cv2.resize(D, (scale_down,scale_down))
# Level-2
app1_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps.shape[0],1)),apps],l,axis=1,mode='constant')
app1_v = scipy.ndimage.filters.convolve1d(app_h,l,axis=0,mode='constant')
app1 = app1_v[:,1:]
H1_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps.shape[0],1)),apps],h,axis=1,mode='constant')
H1_v = scipy.ndimage.filters.convolve1d(H1_h,l,axis=0,mode='constant')
H1 = H1_v[:,1:]
V1_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps.shape[0],1)),apps],l,axis=1,mode='constant')
V1_v = scipy.ndimage.filters.convolve1d(V1_h,h,axis=0,mode='constant')
V1 = V1_v[:,1:]
D1_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps.shape[0],1)),apps],h,axis=1,mode='constant')
D1_v = scipy.ndimage.filters.convolve1d(D1_h,h,axis=0,mode='constant')
D1 = D1_v[:,1:]
scale_down = apps.shape[0]/2
apps1 = cv2.resize(app1, (scale_down,scale_down))
H1s = cv2.resize(H1,(scale_down,scale_down))
V1s = cv2.resize(V1, (scale_down,scale_down))
D1s = cv2.resize(D1, (scale_down,scale_down))
# Level 3
app2_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps1.shape[0],1)),apps1],l,axis=1,mode='constant')
app2_v = scipy.ndimage.filters.convolve1d(app2_h,l,axis=0,mode='constant')
app2 = app2_v[:,1:]
H2_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps1.shape[0],1)),apps1],h,axis=1,mode='constant')
H2_v = scipy.ndimage.filters.convolve1d(H2_h,l,axis=0,mode='constant')
H2 = H2_v[:,1:]
V2_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps1.shape[0],1)),apps1],l,axis=1,mode='constant')
V2_v = scipy.ndimage.filters.convolve1d(V2_h,h,axis=0,mode='constant')
V2 = V2_v[:,1:]
D2_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps1.shape[0],1)),apps1],h,axis=1,mode='constant')
D2_v = scipy.ndimage.filters.convolve1d(D2_h,h,axis=0,mode='constant')
D2 = D2_v[:,1:]
scale_down = apps1.shape[0]/2
apps2 = cv2.resize(app2, (scale_down,scale_down))
H2s = cv2.resize(H2,(scale_down,scale_down))
V2s = cv2.resize(V2, (scale_down,scale_down))
D2s = cv2.resize(D2, (scale_down,scale_down))
# Level 4
app3_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps2.shape[0],1)),apps2],l,axis=1,mode='constant')
app3_v = scipy.ndimage.filters.convolve1d(app3_h,l,axis=0,mode='constant')
app3 = app3_v[:,1:]
H3_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps2.shape[0],1)),apps2],h,axis=1,mode='constant')
H3_v = scipy.ndimage.filters.convolve1d(H3_h,l,axis=0,mode='constant')
H3 = H3_v[:,1:]
V3_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps2.shape[0],1)),apps2],l,axis=1,mode='constant')
V3_v = scipy.ndimage.filters.convolve1d(V3_h,h,axis=0,mode='constant')
V3 = V3_v[:,1:]
D3_h = scipy.ndimage.filters.convolve1d(np.c_[np.zeros((apps2.shape[0],1)),apps2],h,axis=1,mode='constant')
D3_v = scipy.ndimage.filters.convolve1d(D3_h,h,axis=0,mode='constant')
D3 = D3_v[:,1:]
scale_down = apps2.shape[0]/2
apps3 = cv2.resize(app3, (scale_down,scale_down))
H3s = cv2.resize(H3,(scale_down,scale_down))
V3s = cv2.resize(V3, (scale_down,scale_down))
D3s = cv2.resize(D3, (scale_down,scale_down))
return ([apps,Hs,Vs,Ds,apps1,H1s,V1s,D1s,apps2,H2s,V2s,D2s,apps3,H3s,V3s,D3s])
# utility function to apply wavelet transform function to all the images
def wavelet_allImage(img,imggnoise,imgspnoise,l1,h1,string,scale):
[app,H,V,D,app1,H1,V1,D1,app2,H2,V2,D2,app3,H3,D3,V3] = wavelet_transform(img,l1,h1)
[appg,Hg,Vg,Dg,appg1,Hg1,Vg1,Dg1,appg2,Hg2,Vg2,Dg2,appg3,Hg3,Dg3,Vg3] = wavelet_transform(imggnoise,l1,h1)
[appi,Hi,Vi,Di,appi1,Hi1,Vi1,Di1,appi2,Hi2,Vi2,Di2,appi3,Hi3,Di3,Vi3] = wavelet_transform(imgspnoise,l1,h1)
return ([H,V,Hg,Vg,Hi,Vi])
# utility function to carry out thresholding
def thresholding(HH,VV,Edge,H,H2,V,V2):
angle = np.zeros([256,256])
output = np.zeros([256,256])
for i in range(0,256):
for j in range(0,256):
p = np.arctan(VV[i][j]/HH[i][j]) * 180/np.pi
angle[i][j] = p
edge_array = np.zeros([256,256])
Gradient= Edge
for i in range(1,255):
for j in range(1,255):
if ((angle[i][j]>=(-22.5)) and (angle[i][j]<=(22.5)) or (angle[i][j]>=(180-22.5)) \
and (angle[i][j]<=(180+22.5))):
if Gradient[i][j] > Gradient[i+1][j] and Gradient[i][j]>Gradient[i-1][j]:
edge_array[i][j] = Gradient[i][j]
elif ((angle[i][j]>=(90-22.5)) and angle[i][j] <= (90+22.5) or angle[i][j]>=(270-22.5)\
and angle[i][j]<= 270+22.5):
if Gradient[i][j] > Gradient[i][j+1] and Gradient[i][j]>Gradient[i][j-1]:
edge_array[i][j] = Gradient[i][j]
elif ((angle[i][j]>=(45-22.5)) and angle[i][j]<=(45+22.5) or angle[i][j]>=(225-22.5) \
and angle[i][j] <=(225+22.5)):
if Gradient[i][j]> Gradient[i+1][j+1] and Gradient[i][j]>Gradient[i-1][j-1]:
edge_array[i][j] = Gradient[i][j]
else:
if Gradient[i][j]>Gradient[i+1][j-1] and Gradient[i][j] >Gradient[i-1][j+1]:
edge_array[i][j] = Gradient[i][j]
aaa = np.max(edge_array)
edge_array = edge_array/aaa
for i in range(0,256):
for j in range(0,256):
if(edge_array[i][j]>0.2):
output[i][j]=1
else:
output[i][j]=0
scale_up = output.shape[0]*2
resized_output = cv2.resize(output,(scale_up,scale_up))
return resized_output
# utility function to carry out scale multiplication for edge detection
def scale_multiplication(H,H2,V,V2,Hg,Hg2,Vg,Vg2,Hi,Hi2,Vi,Vi2,tx,text):
HH = np.multiply(H,H2)
VV = np.multiply(V,V2)
Edge = np.sqrt(HH+VV)
HHg = np.multiply(Hg,Hg2)
VVg = np.multiply(Vg,Vg2)
Edgeg = np.sqrt(HHg+VVg)
HHi = np.multiply(Hi,Hi2)
VVi = np.multiply(Vi,Vi2)
Edgei = np.sqrt(HHi+VVi)
output_image = thresholding(HH,VV,Edge,H,H2,V,V2)
imshow('Edge of Original Image ' + tx + ' using ' + text , output_image)
output_imageG = thresholding(HHg,VVg,Edgeg,Hg,Hg2,Vg,Vg2)
imshow('Edge of Gaussian Noise Corrupted Image ' + tx + ' using ' + text, output_imageG)
output_imageSP = thresholding(HHi,VVi,Edgei,Hi,Hi2,Vi,Vi2)
imshow('Edge of S&P Noise Corrupted Image ' + tx + ' using' + text, output_imageSP)
def main(argv):
#
start_time = time.time()
path = argv[1]
f = []
for (dirpath, dirnames, filenames) in walk(path):
f.extend(filenames)
break
files = [os.path.join(path,x) for x in f if '.jpg' in x or '.png' in x]
# Read image 1 and add gaussian and S&P Noise
i=1
for item in files:
img1 = cv2.imread(item, cv2.IMREAD_GRAYSCALE).astype('double')
img1gnoise = gaussian_noise(img1,20)
img1spnoise = sp_noise(img1,0.005)
imshow("Original Image #" +str(i),img1)
imshow("White Noise corrupted image" +str(i), img1gnoise)
imshow("Salt and Pepper noise corrupted image" + str(i), img1spnoise)
# Wavelet functions from pywt library
# haar
wavelet = pywt.Wavelet('haar')
[phi1, psi1, x1] = wavelet.wavefun(level=2) # level 2
[phi2,psi2,x2] = wavelet.wavefun(level=3) # level 3
# calculate filter parameters
# l1,l2 = decomposition LPF
# h1,h2 = decomposition HPF
[l1,h1,lr1,hr1] = orthfilt(phi1)
[l2,h2,lr2,hr2] = orthfilt(phi2)
# Edge detection using haar
[H,V,Hg,Vg,Hi,Vi] = wavelet_allImage(img1,img1gnoise,img1spnoise,l1,h1,str(i),' scale 1')
[H2,V2,Hg2,Vg2,Hi2,Vi2] = wavelet_allImage(img1,img1gnoise,img1spnoise,l2,h2,str(i),' scale 2')
scale_multiplication(H,H2,V,V2,Hg,Hg2,Vg,Vg2,Hi,Hi2,Vi,Vi2,str(i), 'haar wavelet ')
#Edge Detection using db2
wavelet = pywt.Wavelet('db2')
[phi1, psi1, x1] = wavelet.wavefun(level=2) # level 2
[phi2,psi2,x2] = wavelet.wavefun(level=3) # level 3
[l1,h1,lr1,hr1] = orthfilt(phi1)
[l2,h2,lr2,hr2] = orthfilt(phi2)
# Edge detection using db2
[H,V,Hg,Vg,Hi,Vi] = wavelet_allImage(img1,img1gnoise,img1spnoise,l1,h1,str(i),' scale 1')
[H2,V2,Hg2,Vg2,Hi2,Vi2] = wavelet_allImage(img1,img1gnoise,img1spnoise,l2,h2,str(i),' scale 2')
scale_multiplication(H,H2,V,V2,Hg,Hg2,Vg,Vg2,Hi,Hi2,Vi,Vi2,str(i), ' db2 wavelet ')
# Edge Detection using symm2
wavelet = pywt.Wavelet('sym2')
[phi1, psi1, x1] = wavelet.wavefun(level=2) # level 2
[phi2,psi2,x2] = wavelet.wavefun(level=3) # level 3
[l1,h1,lr1,hr1] = orthfilt(phi1)
[l2,h2,lr2,hr2] = orthfilt(phi2)
# Edge detection using haar
[H,V,Hg,Vg,Hi,Vi] = wavelet_allImage(img1,img1gnoise,img1spnoise,l1,h1,str(i),' scale 1')
[H2,V2,Hg2,Vg2,Hi2,Vi2] = wavelet_allImage(img1,img1gnoise,img1spnoise,l2,h2,str(i),' scale 2')
scale_multiplication(H,H2,V,V2,Hg,Hg2,Vg,Vg2,Hi,Hi2,Vi,Vi2,str(i), ' Symm2 wavelet ')
i+=1
print "Execution took " + str(time.time()-start_time) + " seconds"
if __name__ == "__main__":
main(sys.argv)