-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_push_data.py
446 lines (410 loc) · 17.4 KB
/
collect_push_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import time
import datetime
import os
import glob
import pybullet as p
import numpy as np
import cv2
import utils
from environment import Environment
from constants import (
DEPTH_MIN,
PUSH_DISTANCE,
IMAGE_SIZE,
GRIPPER_PUSH_RADIUS_PIXEL,
GRIPPER_PUSH_RADIUS_SAFE_PIXEL,
)
class PushDataCollector:
def __init__(self, start_iter=0, end_iter=2000, base_directory=None, seed=0):
# Objects have heights of 0.05 meters, so center should be less than 0.035
self.height_upper = 0.035
self.depth_min = DEPTH_MIN
self.rng = np.random.default_rng(seed)
# Create directory to save data
timestamp = time.time()
timestamp_value = datetime.datetime.fromtimestamp(timestamp)
if base_directory is None:
self.base_directory = os.path.join(
os.path.abspath("logs_push"), timestamp_value.strftime("%Y-%m-%d-%H-%M-%S")
)
else:
self.base_directory = base_directory
print("Creating data logging session: %s" % (self.base_directory))
self.prev_color_heightmaps_directory = os.path.join(
self.base_directory, "data", "prev-color-heightmaps"
)
self.prev_depth_heightmaps_directory = os.path.join(
self.base_directory, "data", "prev-depth-heightmaps"
)
self.prev_pose_directory = os.path.join(self.base_directory, "data", "prev-poses")
self.next_color_heightmaps_directory = os.path.join(
self.base_directory, "data", "next-color-heightmaps"
)
self.next_depth_heightmaps_directory = os.path.join(
self.base_directory, "data", "next-depth-heightmaps"
)
self.next_pose_directory = os.path.join(self.base_directory, "data", "next-poses")
self.action_directory = os.path.join(self.base_directory, "data", "actions")
self.mask_directory = os.path.join(self.base_directory, "data", "masks")
if not os.path.exists(self.prev_color_heightmaps_directory):
os.makedirs(self.prev_color_heightmaps_directory)
if not os.path.exists(self.prev_depth_heightmaps_directory):
os.makedirs(self.prev_depth_heightmaps_directory)
if not os.path.exists(self.prev_pose_directory):
os.makedirs(self.prev_pose_directory)
if not os.path.exists(self.next_color_heightmaps_directory):
os.makedirs(self.next_color_heightmaps_directory)
if not os.path.exists(self.next_depth_heightmaps_directory):
os.makedirs(self.next_depth_heightmaps_directory)
if not os.path.exists(self.next_pose_directory):
os.makedirs(self.next_pose_directory)
if not os.path.exists(self.action_directory):
os.makedirs(self.action_directory)
if not os.path.exists(self.mask_directory):
os.makedirs(self.mask_directory)
self.iter = start_iter
self.end_iter = end_iter
def reset_np_random(self, seed):
self.rng = np.random.default_rng(seed)
def save_heightmaps(
self,
iteration,
prev_color_heightmap,
prev_depth_heightmap,
next_color_heightmap,
next_depth_heightmap,
):
color_heightmap = cv2.cvtColor(prev_color_heightmap, cv2.COLOR_RGB2BGR)
cv2.imwrite(
os.path.join(self.prev_color_heightmaps_directory, "%07d.color.png" % (iteration)),
color_heightmap,
)
depth_heightmap = np.round(prev_depth_heightmap * 100000).astype(
np.uint16
) # Save depth in 1e-5 meters
cv2.imwrite(
os.path.join(self.prev_depth_heightmaps_directory, "%07d.depth.png" % (iteration)),
depth_heightmap,
)
color_heightmap = cv2.cvtColor(next_color_heightmap, cv2.COLOR_RGB2BGR)
cv2.imwrite(
os.path.join(self.next_color_heightmaps_directory, "%07d.color.png" % (iteration)),
color_heightmap,
)
depth_heightmap = np.round(next_depth_heightmap * 100000).astype(
np.uint16
) # Save depth in 1e-5 meters
cv2.imwrite(
os.path.join(self.next_depth_heightmaps_directory, "%07d.depth.png" % (iteration)),
depth_heightmap,
)
def save_masks(self, iteration, mask):
cv2.imwrite(os.path.join(self.mask_directory, "%07d.mask.png" % (iteration)), mask)
def save_action(self, iteration, pose):
np.savetxt(
os.path.join(self.action_directory, "%07d.action.txt" % (iteration)), pose, fmt="%s"
)
def save_pose(self, iteration, pose0, pose1):
np.savetxt(
os.path.join(self.prev_pose_directory, "%07d.pose.txt" % (iteration)), pose0, fmt="%s"
)
np.savetxt(
os.path.join(self.next_pose_directory, "%07d.pose.txt" % (iteration)), pose1, fmt="%s"
)
def add_object_push_from_file(self, env, file_name):
body_ids = []
success = True
# Read data
with open(file_name, "r") as preset_file:
file_content = preset_file.readlines()
num_obj = len(file_content)
obj_files = []
obj_mesh_colors = []
obj_positions = []
obj_orientations = []
for object_idx in range(num_obj):
file_content_curr_object = file_content[object_idx].split()
obj_file = os.path.join("assets", "blocks", file_content_curr_object[0])
obj_files.append(obj_file)
obj_positions.append(
[
float(file_content_curr_object[4]),
float(file_content_curr_object[5]),
float(file_content_curr_object[6]),
]
)
obj_orientations.append(
[
float(file_content_curr_object[7]),
float(file_content_curr_object[8]),
float(file_content_curr_object[9]),
]
)
obj_mesh_colors.append(
[
float(file_content_curr_object[1]),
float(file_content_curr_object[2]),
float(file_content_curr_object[3]),
]
)
# Import objects
for object_idx in range(num_obj):
curr_mesh_file = obj_files[object_idx]
object_position = [
obj_positions[object_idx][0],
obj_positions[object_idx][1],
obj_positions[object_idx][2],
]
object_orientation = [
obj_orientations[object_idx][0],
obj_orientations[object_idx][1],
obj_orientations[object_idx][2],
]
object_color = [
obj_mesh_colors[object_idx][0],
obj_mesh_colors[object_idx][1],
obj_mesh_colors[object_idx][2],
1,
]
body_id = p.loadURDF(
curr_mesh_file, object_position, p.getQuaternionFromEuler(object_orientation)
)
p.changeVisualShape(body_id, -1, rgbaColor=object_color)
body_ids.append(body_id)
env.add_object_id(body_id)
success &= env.wait_static()
success &= env.wait_static()
# give time to stop
for _ in range(5):
p.stepSimulation(env.client_id)
return body_ids, success
def add_object_push(self, env):
"""Randomly dropped objects to the workspace"""
color_space = (
np.asarray(
[
[78.0, 121.0, 167.0], # blue
[89.0, 161.0, 79.0], # green
[156, 117, 95], # brown
[242, 142, 43], # orange
[237.0, 201.0, 72.0], # yellow
[186, 176, 172], # gray
[255.0, 87.0, 89.0], # red
[176, 122, 161], # purple
[118, 183, 178], # cyan
[255, 157, 167], # pink
]
)
/ 255.0
)
drop_height = 0.15
obj_num = self.rng.choice(
[1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.01, 0.04, 0.05, 0.15, 0.20, 0.20, 0.15, 0.1, 0.1]
)
mesh_list = glob.glob("assets/blocks/*.urdf")
obj_mesh_ind = self.rng.choice(mesh_list, obj_num)
obj_mesh_color = color_space[np.asarray(range(obj_num)), :]
obj_mesh_color_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8]
# Add each object to robot workspace at x,y location and orientation (random or pre-loaded)
body_ids = []
object_positions = []
object_orientations = []
success = True
for object_idx in range(len(obj_mesh_ind)):
curr_mesh_file = obj_mesh_ind[object_idx]
drop_x = 0.45 + self.rng.random() * 0.1
drop_y = -0.05 + self.rng.random() * 0.1
object_position = [drop_x, drop_y, drop_height]
object_orientation = [0, 0, 2 * np.pi * self.rng.random()]
adjust_angle = 2 * np.pi * self.rng.random()
object_color = [
obj_mesh_color[obj_mesh_color_ind[object_idx]][0],
obj_mesh_color[obj_mesh_color_ind[object_idx]][1],
obj_mesh_color[obj_mesh_color_ind[object_idx]][2],
1,
]
body_id = p.loadURDF(
curr_mesh_file, object_position, p.getQuaternionFromEuler(object_orientation)
)
p.changeVisualShape(body_id, -1, rgbaColor=object_color)
body_ids.append(body_id)
env.add_object_id(body_id)
success &= env.wait_static()
count = 0
while success:
success &= env.wait_static()
object_position, _ = p.getBasePositionAndOrientation(body_id)
if count > 20:
break
# if overlap
if object_position[2] > self.height_upper:
drop_x = np.cos(adjust_angle) * 0.01 + drop_x # 1 cm
drop_y = np.sin(adjust_angle) * 0.01 + drop_y
object_position = [drop_x, drop_y, drop_height]
p.resetBasePositionAndOrientation(
body_id, object_position, p.getQuaternionFromEuler(object_orientation)
)
else:
break
count += 1
if count > 20:
object_position = [drop_x, drop_y, self.height_upper + 0.01]
p.resetBasePositionAndOrientation(
body_id, object_position, p.getQuaternionFromEuler(object_orientation)
)
object_position, _ = p.getBasePositionAndOrientation(body_id)
object_positions.append(object_position)
object_orientations.append(object_orientation)
for idx in range(len(body_ids)):
p.resetBasePositionAndOrientation(
body_ids[idx],
object_positions[idx],
p.getQuaternionFromEuler(object_orientations[idx]),
)
success &= env.wait_static()
# give time to stop
for _ in range(5):
p.stepSimulation(env.client_id)
return body_ids, success
def is_valid(self, body_ids, env):
"""Decide randomly dropped objects in the valid state."""
for body_id in body_ids:
# Check height
object_position, object_orientation = p.getBasePositionAndOrientation(body_id)
if object_position[2] > self.height_upper:
print(f"Height is wrong. Skip! {object_position[2]} > {self.height_upper}")
return False
# Check range
if (
object_position[0] < env.bounds[0][0] + PUSH_DISTANCE / 2
or object_position[0] > env.bounds[0][1] - PUSH_DISTANCE / 2
or object_position[1] < env.bounds[1][0] + PUSH_DISTANCE / 2
or object_position[1] > env.bounds[1][1] - PUSH_DISTANCE / 2
):
print(f"Out of bounds. Skip! {object_position[0]}, {object_position[1]}")
return False
# Check orientation
object_orientation = p.getEulerFromQuaternion(object_orientation)
if abs(object_orientation[0]) > 1e-2 or abs(object_orientation[1]) > 1e-2:
print(f"Wrong orientation. Skip! {object_orientation}")
return False
return True
def get_push_action(self, depth):
"""Find target and push, the robot makes a push from left to right."""
depth_heightmap = np.copy(depth)
depth_heightmap[depth_heightmap <= self.depth_min] = 0
depth_heightmap[depth_heightmap > self.depth_min] = 1
y_indices = np.argwhere(depth_heightmap == 1)[:, 1] # Find the y range
if len(y_indices) == 0:
print("find Skip")
return None
y_list_unique, y_list_count = np.unique(y_indices, return_counts=True)
y_list_dist = y_list_count / y_list_count.sum()
y = self.rng.choice(y_list_unique, p=y_list_dist)
x_indices = np.argwhere(depth_heightmap[:, y] == 1)[:, 0] # Find the x range
x_indices_left = np.argwhere(
depth_heightmap[:, max(0, y - GRIPPER_PUSH_RADIUS_PIXEL)] == 1
)[
:, 0
] # Find the x range
x_indices_right = np.argwhere(
depth_heightmap[:, min(y + GRIPPER_PUSH_RADIUS_PIXEL, IMAGE_SIZE - 1)] == 1
)[
:, 0
] # Find the x range
if len(x_indices) == 0:
print("Skip 1")
return None
x = x_indices.min()
if len(x_indices_left) != 0:
x = min(x, x_indices_left.min())
if len(x_indices_right) != 0:
x = min(x, x_indices_right.min())
x = x - GRIPPER_PUSH_RADIUS_SAFE_PIXEL
if x <= 0:
print("Skip 2")
return None
safe_z_position = 0.01
return [
x * env.pixel_size + env.bounds[0][0],
y * env.pixel_size + env.bounds[1][0],
safe_z_position,
]
def get_poses(self, body_ids):
poses = []
for body_id in body_ids:
pos, rot = p.getBasePositionAndOrientation(body_id)
rot = p.getEulerFromQuaternion(rot)
poses.append(pos[0])
poses.append(pos[1])
poses.append(rot[0])
poses.append(rot[1])
poses.append(rot[2])
return poses
if __name__ == "__main__":
is_test = False
env = Environment(gui=False)
if is_test:
collector = PushDataCollector(start_iter=0, end_iter=2000)
cases = sorted(glob.glob("hard-cases-test/*.txt"))
else:
collector = PushDataCollector(start_iter=0, end_iter=200000)
cases = sorted(glob.glob("hard-cases/*.txt"))
cases_idx = 0
num_cases = len(cases)
if is_test:
seed = 200000
else:
seed = 0
# multi_thread_start = 160
# multi_thread_end = multi_thread_start + 40
# collector.iter += multi_thread_start
# seed += multi_thread_start
# cases_idx += multi_thread_start
while collector.iter < collector.end_iter:
# if collector.iter > multi_thread_end:
# break
print(f"-----Collecting: {collector.iter + 1}/{collector.end_iter}-----")
collector.reset_np_random(seed)
env.reset(use_gripper=False)
# add objects, some from hard cases and some from random cases
if collector.iter > collector.end_iter // 5:
body_ids, success = collector.add_object_push_from_file(env, cases[cases_idx])
cases_idx += 1
if cases_idx == num_cases:
cases_idx = 0
else:
body_ids, success = collector.add_object_push(env)
if success and collector.is_valid(body_ids, env):
# record info0
color0, depth0, segm0 = utils.get_true_heightmap(env)
poses0 = collector.get_poses(body_ids)
# push
action = collector.get_push_action(depth0)
if action is not None:
action_end = [action[0] + PUSH_DISTANCE, action[1], action[2]]
success = env.push(action, action_end)
success &= env.wait_static()
success &= collector.is_valid(body_ids, env)
if success:
# record info1
color1, depth1, segm1 = utils.get_true_heightmap(env)
poses1 = collector.get_poses(body_ids)
# save data
collector.save_heightmaps(collector.iter, color0, depth0, color1, depth1)
collector.save_action(collector.iter, [action])
collector.save_pose(collector.iter, [poses0], [poses1])
# >>>>> save masks
# segm_ids = np.unique(segm1)
# for sid in segm_ids:
# if sid not in body_ids:
# segm1[segm1 == sid] = 0
# bidxs = []
# for bid in body_ids:
# bidxs.append(segm1 == bid)
# for idx, bidx in enumerate(bidxs):
# segm1[bidx] = idx + 1
# collector.save_masks(collector.iter, segm1)
# <<<<<
collector.iter += 1
seed += 1