You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
12/05/2023 16:14:48 - INFO - dalm.pipelines.reading_comprehension_pipeline - LLM RC dataset generated text of length 2415 from context of length 670
12/05/2023 16:14:48 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing unprocessed LLM output to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv8_0.json
12/05/2023 16:14:48 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing Q & A chat completions of length 9 to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv8_0.json
12/05/2023 16:15:17 - INFO - dalm.pipelines.reading_comprehension_pipeline - LLM RC dataset generated text of length 2855 from context of length 11202
12/05/2023 16:15:17 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing unprocessed LLM output to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv9_0.json
12/05/2023 16:15:17 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing Q & A chat completions of length 9 to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv9_0.json
/opt/conda/lib/python3.10/site-packages/transformers/pipelines/base.py:1101: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
12/05/2023 16:15:41 - INFO - dalm.pipelines.reading_comprehension_pipeline - LLM RC dataset generated text of length 2240 from context of length 2841
12/05/2023 16:15:41 - WARNING - dalm.datasets.reading_comprehension_generation.utils - Found a question with no answer: {'question': 's and answer task:', 'answer': 'TBD'}. Skipping.
12/05/2023 16:15:41 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing unprocessed LLM output to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv10_0.json
12/05/2023 16:15:41 - INFO - dalm.pipelines.reading_comprehension_pipeline - Writing Q & A chat completions of length 7 to context_data_c8307498-165e-49b6-b073-214fbe9bb8e0.csv10_0.json
12/05/2023 16:15:42 - ERROR - root - Training failed with exception: CUDA out of memory. Tried to allocate 2.00 GiB (GPU 0; 22.20 GiB total capacity; 17.54 GiB already allocated; 327.12 MiB free; 20.83 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Traceback (most recent call last):
File "//train_generator.py", line 153, in <module>
create_reading_comprehension_dataset_and_train()
File "//train_generator.py", line 134, in create_reading_comprehension_dataset_and_train
pipeline(
File "/opt/conda/lib/python3.10/site-packages/dalm/pipelines/reading_comprehension_pipeline.py", line 146, in pipeline
for index, text_identifier, context, gen_text in llm_rc_dataset_generator:
File "/opt/conda/lib/python3.10/site-packages/dalm/datasets/reading_comprehension_generation/synthetic_based.py", line 119, in generate_synthetic_dataset
gen_text = generate_synthetic_data(model_pipeline, chunk_, generation_params)
File "/opt/conda/lib/python3.10/site-packages/dalm/datasets/reading_comprehension_generation/synthetic_based.py", line 82, in generate_synthetic_data
outputs = model_pipeline(prompt, **generation_params)
File "/opt/conda/lib/python3.10/site-packages/transformers/pipelines/text_generation.py", line 208, in __call__
return super().__call__(text_inputs, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1140, in __call__
return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)
File "/opt/conda/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1147, in run_single
model_outputs = self.forward(model_inputs, **forward_params)
File "/opt/conda/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1046, in forward
model_outputs = self._forward(model_inputs, **forward_params)
File "/opt/conda/lib/python3.10/site-packages/transformers/pipelines/text_generation.py", line 271, in _forward
generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py", line 1719, in generate
return self.sample(
File "/opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py", line 2801, in sample
outputs = self(
File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/models/mistral/modeling_mistral.py", line 1009, in forward
outputs = self.model(
File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/models/mistral/modeling_mistral.py", line 897, in forward
layer_outputs = decoder_layer(
File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/models/mistral/modeling_mistral.py", line 626, in forward
hidden_states, self_attn_weights, present_key_value = self.self_attn(
File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/conda/lib/python3.10/site-packages/transformers/models/mistral/modeling_mistral.py", line 286, in forward
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
File "/opt/conda/lib/python3.10/site-packages/torch/nn/functional.py", line 1845, in softmax
ret = input.softmax(dim, dtype=dtype)
The text was updated successfully, but these errors were encountered:
With a subset of the nuclear patent dataset, it throws this error:
The text was updated successfully, but these errors were encountered: