-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathladmp_lrr_fast_acc_withD.m
197 lines (162 loc) · 5.05 KB
/
ladmp_lrr_fast_acc_withD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
function [Z,E] = ladmp_lrr_fast(X,D,lambda,rho,DEBUG)
% This matlab code implements linearized ADM method for LRR problem
%------------------------------
% min |Z|_*+lambda*|E|_2,1
% s.t., X = XZ+E
%--------------------------------
% inputs:
% X -- D*N data matrix
% lambda -- the parameter in the LRR model. Warning: if lambda
% is too large, then Z may not be of low rank and hence there will
% not be much advantage of representing A as (U,s,V). Otherwise,
% we suggest that A is computed explicitly and then compute its full SVD.
% We have tested that lansvd() is faster than svd() only
% when sv/min(d,n) <= 1/4.
% outputs:
% Z -- N*N representation matrix
% E -- D*N sparse error matrix
% relChgs --- relative changes
% recErrs --- reconstruction errors
%
% created by Risheng Liu on 05/02/2011, rsliu0705@gmail.com
%
clear global;
global A Xg eta M;%A is the skinny SVD of Z_k, Xg is a copy of X, and M=X-E_{k+1}+Y/mu_k.
% addpath PROPACK;
% TODO: acc as LRR
% size(D)
P=orth(D'); % nxr
save P.mat P; % TODO:
r=size(P,2);
A=D*P; % 3xr
% size(A)
% solve min ||Z||_* + \lambda ||E||_2,1 s.t. X=AZ+E
% A 3xr
% X 3xn
% Z rxn
if (~exist('DEBUG','var'))
DEBUG = 0;
end
if nargin < 3
rho = 1.9;
end
if nargin < 2
lambda = 0.1;
end
normfX = norm(X,'fro');
tol1 = 1e-4;%threshold for the error in constraint
tol2 = 1e-5;%threshold for the change in the solutions
[d n] = size(X);
opt.tol = tol2;%precision for computing the partial SVD
opt.p0 = ones(n,1);
maxIter = 1000;
max_mu = 1e10;
norm2X = norm(X,2);
% mu = 1e2*tol2;
mu = min(d,n)*tol2;
Xg = X;
eta = norm2X*norm2X*1.02;%eta needs to be larger than ||X||_2^2, but need not be too large.
%% Initializing optimization variables
% intialize
E = sparse(d,n);
Y = zeros(d,n);
% Z = zeros(r, n);
%the initial guess of the rank of Z is 5.
sv = 1;
svp = sv;
AA.U = zeros(r,sv);%the left singluar vectors of Z
AA.s = zeros(sv,1);%the singular values of Z
AA.V = zeros(n,sv);%the right singular vectors of Z
AZ = zeros(d,n);%AZ = A*Z;
%% Start main loop
convergenced = 0;
iter = 0;
% if DEBUG
% disp(['initial,rank(Z)=' num2str(rank(Z))]);
% end
while iter<maxIter
iter = iter + 1;
%copy E and A to compute the change in the solutions
Ek = E;
AAk = AA;
% E = solve_l1l2(X - XZ + Y/mu,lambda/mu);
E = l21(X - AZ + Y/mu,lambda/mu);
%-----------Using PROPACK--------------%
% tic
M = AA.U*diag(AA.s)*AA.V' + A'*(X - AZ - E + Y/mu)/eta;
[AA.U,AA.s,AA.V]=singular_value_shrinkage_implicit(M,1/(mu*eta));
% [U, S, V] = lansvd('Axz','Atxz', n, n, sv, 'L', opt);
% %[U, S, V] = lansvd('Axz','Atxz', n, n, sv, 'L');
% S = diag(S);
% svp = length(find(S>1/(mu*eta)));
% if svp < sv
% sv = min(svp + 1, n);
% else
% sv = min(svp + round(0.05*n), n);
% end
% if svp>=1
% S = S(1:svp)-1/(mu*eta);
% else
% svp = 1;
% S = 0;
% end
% %Z = A.U*diag(A.s)*A.V', but we never explicitly form Z until outputing it at the end
% A.U = U(:, 1:svp);
% A.s = S;
% A.V = V(:, 1:svp);
% toc
%compute ||Z-Zk||_F = sqrt(||Z||_F^2 + ||Zk||_F^2 - 2 tr(Z'*Zk))
% = sqrt(norm(A.s)^2 + norm(Ak.s)^2 - 2 tr(A.V*diag(A.s)*A.U'*Ak.U*diag(Ak.s)*Ak.V') )
% = sqrt(norm(A.s)^2 + norm(Ak.s)^2
% - 2 tr(Ak.V'*A.V*diag(A.s)*A.U'*Ak.U*diag(Ak.s)) )
% = sqrt(norm(A.s)^2 + norm(Ak.s)^2
% - 2 *sum(sum((diag(A.s)*A.V'*Ak.V).*(A.U'*Ak.U*diag(Ak.s)))))
%abs() is added to prevent negative values resulting from rounding
%error.
diffZ = sqrt(abs(norm(AA.s)^2 + norm(AAk.s)^2 - 2*sum(sum((diag(AA.s)*(AA.V'*AAk.V)).*((AA.U'*AAk.U)*diag(AAk.s))))));
relChgZ = diffZ/normfX;
relChgE = norm(E - Ek,'fro')/normfX;
relChg = max(relChgZ,relChgE);
%copmute XZ = X*A.U*diag(A.s)*(A.V)'
AZ = A*AA.U;
for i = 1:size(AA.U,2)
AZ(:,i) = AZ(:,i)*AA.s(i);
end
AZ = AZ*(AA.V)';
dY = X - AZ - E;
recErr = norm(dY,'fro')/normfX;
convergenced = recErr <tol1 && relChg < tol2;
if DEBUG
if iter==1 || mod(iter,50)==0 || convergenced
disp(['iter ' num2str(iter) ',mu=' num2str(mu) ...
',rank(Z)=' num2str(svp) ',relChg=' num2str(max(relChgZ,relChgE))...
',recErr=' num2str(recErr)]);
end
end
if convergenced
% if recErr <tol1 & mu*max(relChgZ,relChgE) < tol2 %this is the correct
% stopping criteria.
break;
else
Y = Y + mu*dY;
% if mu*relChg < tol2
mu = min(max_mu, mu*rho);
% end
end
end
Z = AA.U*diag(AA.s)*AA.V';
Z = P*Z;
function [E] = solve_l1l2(W,lambda)
n = size(W,2);
E = W;
for i=1:n
E(:,i) = solve_l2(W(:,i),lambda);
end
function [x] = solve_l2(w,lambda)
% min lambda |x|_2 + |x-w|_2^2
nw = norm(w);
if nw>lambda
x = (nw-lambda)*w/nw;
else
x = zeros(length(w),1);
end