-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutil.py
59 lines (50 loc) · 1.55 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import numpy as np
import svm_train as st
import subprocess
import math
#get the screen res
def get_screen_res():
output = subprocess.Popen('xrandr | grep "\*" | cut -d" " -f4',shell=True, stdout=subprocess.PIPE).communicate()[0]
resolution = output.split()[0].split(b'x')
return {'w': resolution[0], 'h': resolution[1]}
#Get the biggest Controur
def getMaxContour(contours,minArea=200):
maxC=None
maxArea=minArea
for cnt in contours:
area=cv2.contourArea(cnt)
if(area>maxArea):
maxArea=area
maxC=cnt
return maxC
def getContourBiggerThan(contours,minArea=200,maxArea=9000):
maxC=[]
for cnt in contours:
area=cv2.contourArea(cnt)
if area<maxArea and area>minArea:
maxC.append(cnt)
return maxC
#Get Gesture Image by prediction
def getGestureImg(cnt,img,th1,model):
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
imgT=img[y:y+h,x:x+w]
imgT=cv2.bitwise_and(imgT,imgT,mask=th1[y:y+h,x:x+w])
imgT=cv2.resize(imgT,(200,200))
imgTG=cv2.cvtColor(imgT,cv2.COLOR_BGR2GRAY)
#cv2.imshow('imgTG',imgTG)
resp=st.predict(model,imgTG)
img=cv2.imread('TrainData/'+str(int(resp[0])+1)+'_2.jpg')
return img,str(int(resp[0])+1)
#get slope of line
def getSlope(pt1,pt2):
x1,y1=pt1[0],pt1[1]
x2,y2=pt2[0],pt2[1]
m=float((y2-y1))/float((x2-x1))
return math.degrees(math.atan(m))
def getDist(p1,p2):
x1,y1=p1[0],p1[1]
x2,y2=p2[0],p2[1]
d=((x1-x2)**2+(y1-y2)**2)**.5
return int(d)