forked from dbouquin/IS_608
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vis_final.Rmd
82 lines (73 loc) · 3.07 KB
/
vis_final.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
title: "Small Satelite Launches Worldwide"
author: "Daina Bouquin"
output: html_document
---
Final plots and write up can be found on my personal blog [here](http://dainabouquin.com/608_final/). Within each plot you can re-scale, zoom, and more using the toolbar at the top.
----------------
```{r, echo= FALSE, message = FALSE, warning=FALSE}
#setup
library(plotly)
devtools::install_github("ropensci/plotly")
library(plyr)
library(dplyr)
Sys.setenv("plotly_username"="dbouquin")
Sys.setenv("plotly_api_key"="m80wxbo7xf")
library(RColorBrewer)
# read in the pre-cleaned data from the web
download.file("https://raw.githubusercontent.com/dbouquin/IS_608/master/NanosatDB_munging/final_sats.csv", "final_sats.csv", method="curl")
final_sats <- read.csv("final_sats.csv", na.strings = "NA")
# do final manipulations for plotting and write to csv
counts_country <- ddply(final_sats, .(final_sats$Year, final_sats$Nation, final_sats$region), nrow)
colnames(counts_country) <- c("Year", "Country", "Region", "Count")
write.csv(counts_country, "counts_country.csv")
# plot in 2 rows
plot <- ggplot(data = counts_country, aes(x = Year, y = Count, color = Region, text = paste("country:", Country))) +
geom_point(size= 2, alpha = (1/2)) +
facet_wrap(~ Region, nrow = 2)
f <- list(
family = "sans-serif",
size = 14,
color = "#000"
)
f2 <- list(
family = "sans-serif",
size = 10,
color = "#000"
)
l <- list(
font = f2,
bgcolor = "#E2E2E2",
bordercolor = "#FFFFFF",
borderwidth = 2
)
```
```{r, echo= FALSE, message = FALSE, warning=FALSE}
(gg_plot <- ggplotly(plot) %>% layout(autosize = F, width = 900, height = 550, legend = l) %>% layout(xaxis = f, yaxis = f))
```
```{r, echo= FALSE, message = FALSE, warning=FALSE}
# Send the plot to be hosted on Plotly
# embed code will be used on personal website to show final result
# plotly_POST(gg_plot, filename="gg_plot", sharing="public")
```
```{r, echo=FALSE, warning = FALSE}
# Bar plot for Org type
# Data from GitHub again
download.file("https://raw.githubusercontent.com/dbouquin/IS_608/master/NanosatDB_munging/final_sats.csv", "final_sats.csv", method="curl")
final_sats <- read.csv("final_sats.csv", na.strings = "NA")
# Process for plotting
counts_org_type <- ddply(final_sats, .(final_sats$Nation, final_sats$region, final_sats$Organization_Type), nrow)
colnames(counts_org_type) <- c("Country", "Region", "Org_Type", "Count")
# Identified record with unknown Org_Type: -0
# Write record as "unknown"
counts_org_type$Org_Type <- gsub("-0", "Unknown", counts_org_type$Org_Type)
```
```{r, echo= FALSE, message = FALSE, warning=FALSE}
# Create bar chart by region and type of organization
bars <- counts_org_type %>% plot_ly(x = Region, y = Count, type = "bar", color = Org_Type, colors = "Paired", text = paste(Org_Type,":", Count), hoverinfo = "text")
bars %>% layout(autosize = F, width = 900, height = 550, legend = list(x = .8, y = .6)) %>% layout(xaxis = f, yaxis = f)
```
```{r, echo= FALSE, message = FALSE, warning=FALSE}
# Again push to plotly to get embed codes
# plotly_POST(bars, filename="bar_plot", sharing="public")
```