-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmodel.py
99 lines (79 loc) · 3.33 KB
/
fmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn, optim
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from collections import OrderedDict
import json
from PIL import Image
import futility
def setup_network(structure='vgg16',dropout=0.1,hidden_units=4096, lr=0.001, device='gpu'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if structure == 'vgg16':
model = models.vgg16(pretrained=True)
elif structure == 'densenet121':
model = models.densenet121(pretrained=True)
for para in model.parameters():
para.requires_grad = False
from collections import OrderedDict
model.classifier = nn.Sequential(nn.Linear(model.classifier[0].in_features , hidden_units),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_units, 102),
nn.LogSoftmax(dim=1))
print(model)
model = model.to(device)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr)
if torch.cuda.is_available() and device == 'gpu':
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
model.to(device)
return model, criterion
def save_checkpoint(train_data, model = 0, path = 'checkpoint.pth', structure = 'vgg16', hidden_units = 4096, dropout = 0.3, lr = 0.001, epochs = 1):
model.class_to_idx = train_data.class_to_idx
torch.save({'structure' :structure,
'hidden_units':hidden_units,
'dropout':dropout,
'learning_rate':lr,
'no_of_epochs':epochs,
'state_dict':model.state_dict(),
'class_to_idx':model.class_to_idx},
path)
def load_checkpoint(path = 'checkpoint.pth'):
checkpoint = torch.load(path)
lr = checkpoint['learning_rate']
hidden_units = checkpoint['hidden_units']
dropout = checkpoint['dropout']
epochs = checkpoint['no_of_epochs']
structure = checkpoint['structure']
model, _ = setup_network(structure, dropout, hidden_units, lr)
model.class_to_idx = checkpoint['class_to_idx']
model.load_state_dict(checkpoint['state_dict'])
return model
def predict(image_path, model, topk=5, device='gpu'):
model.to('cuda')
model.eval()
img = process_image(image_path).numpy()
img = torch.from_numpy(np.array([img])).float()
with torch.no_grad():
output = model.forward(img.cuda())
probs = torch.exp(output).data
return probs.topk(topk)
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
img_pil = Image.open(image)
img_transforms = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image = img_transforms(img_pil)
return image