-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstructured.v
610 lines (554 loc) · 21.9 KB
/
structured.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
Require Import Coq.Strings.String.
From mathcomp Require Import
ssreflect ssrfun ssrbool ssrnat eqtype choice seq ssrnum ssrint ssralg bigop.
From deriving Require Import deriving.
From extructures Require Import ord fset fmap ffun fperm.
From CoqUtils Require Import nominal.
From memsafe Require Import basic.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Structured.
Local Open Scope fset_scope.
Local Open Scope fperm_scope.
Local Open Scope state_scope.
Notation locals := {fmap string -> value}.
Notation heap := {fmap ptr -> value}.
Implicit Types (ls : locals) (h : heap) (x : string) (s : locals * heap).
Implicit Types (A : {fset name}).
Global Instance match_result_eqvar
(T : nominalType) S {eS : nominalRel S}
π (r1 r2 : result T) b11 b12 b21 b22 b31 b32 :
nomR π r1 r2 ->
nomR π b11 b12 ->
nomR π b21 b22 ->
nomR π b31 b32 ->
nomR π
match r1 with
| Done x => b11 x : S
| Error => b21
| NotYet => b31
end
match r2 with
| Done x => b12 x : S
| Error => b22
| NotYet => b32
end.
Proof. case: r1 => [?| |] // <-; finsupp. Qed.
Definition bind_res (T S : nominalType) A (f : T -> result {restr S}) (rx : result {restr T}) :=
match rx with
| Done rx => bindr A f rx
| Error => Error
| NotYet => NotYet
end.
Global Instance bind_res_eqvar
(T S : nominalType) A (f : T -> result {restr S}) :
{finsupp A f} -> {finsupp A bind_res A f}.
Proof. by rewrite /bind_res; finsupp. Qed.
Definition pbind_res (T : nominalType) A (P : T -> Prop) (rx : result {restr T}) :=
forall (rx' : {restr T}), rx = Done rx' -> pbindr A P rx'.
Lemma pbind_resE (T : nominalType) A (P : T -> Prop) (rx : {restr T}) :
pbind_res A P (Done rx) <-> pbindr A P rx.
Proof. by split; [move=> /(_ rx erefl)|move=> ? _ [<-]]. Qed.
Lemma hide_pbind_res (T : nominalType) A A' (P : T -> Prop) (rx : result {restr T}) :
{finsupp A P} -> fdisjoint A A' -> pbind_res A P (hide A' rx) <-> pbind_res A P rx.
Proof.
case: rx => [rx| |] //= fs dis.
by rewrite -[hide A' (Done rx)]/(Done (hide A' rx)) 2!pbind_resE hide_pbindr.
Qed.
Lemma pbind_res_bind (T S : nominalType) A1 A2 A3
(P : T -> Prop) (Q : S -> Prop)
(f : T -> result {restr S}) (rx : result {restr T}) :
{finsupp A1 P} ->
{finsupp A2 Q} ->
{finsupp A3 f} ->
(forall x : T, P x -> pbind_res A2 Q (f x)) ->
pbind_res A1 P rx ->
pbind_res A2 Q (bind_res A3 f rx).
Proof.
move=> fs1 fs2 fs3 Pf.
case: rx => [rx| |] //=.
case/(restrP (A1 :|: A2 :|: A3)): rx => /= A4 x.
rewrite 2!fdisjointUl -andbA => /and3P [dis1 dis2 dis3] sub.
rewrite pbind_resE pbindrE // => Px.
rewrite bindrE // hide_pbind_res //.
by apply: Pf.
Qed.
Lemma pbind_res_impl (T : nominalType) A1 A2 (P1 P2 : T -> Prop) rx :
{finsupp A1 P1} ->
{finsupp A2 P2} ->
(forall x : T, P1 x -> P2 x) ->
pbind_res A1 P1 rx -> pbind_res A2 P2 rx.
Proof.
move: rx => [rx| |] //=; rewrite 2!pbind_resE; exact: pbindr_impl.
Qed.
Fixpoint eval_com c s k : result {restr locals * heap} :=
if k is S k' then
match c with
| Assn x e =>
Done (Restr (setm s.1 x (eval_expr true e s.1), s.2))
| Load x e =>
if eval_expr true e s.1 is VPtr p _ then
if s.2 p is Some v then Done (Restr (setm s.1 x v, s.2))
else Error
else Error
| Store e e' =>
if eval_expr true e s.1 is VPtr p _ then
if updm s.2 p (eval_expr true e' s.1) is Some h' then Done (Restr (s.1, h'))
else Error
else Error
| Alloc x e =>
if eval_expr true e s.1 is VNum (Posz n) then
Done (new (names s) (fun i =>
Restr (setm s.1 x (VPtr (i, 0 : int) n),
unionm (mkblock i (nseq n (VNum 0))) s.2)))
else Error
| Free e =>
if eval_expr true e s.1 is VPtr p _ then
if p.2 == 0 then
if p.1 \in domm (*((@currym _ _ _ : heap -> _) s.2)*) (currym s.2) then
Done (Restr (s.1, filterm (fun (p' : ptr) _ => p'.1 != p.1) s.2))
else Error
else Error
else Error
| Skip => Done (Restr s)
| Seq c1 c2 => bind_res fset0 (fun s' => eval_com c2 s' k') (eval_com c1 s k')
| If e ct ce =>
if eval_expr true e s.1 is VBool b then
eval_com (if b then ct else ce) s k'
else Error
| While e c =>
if eval_expr true e s.1 is VBool b then
eval_com (if b then Seq c (While e c) else Skip) s k'
else Error
end
else NotYet.
Global Instance eval_binop_eqvar b : {eqvar eval_binop b}.
Proof.
by case: b => [] π [b1|n1|p1 sz1|] _ <- [b2|n2|p2 sz2|] _ <- //=; finsupp.
Qed.
Global Instance eval_expr_eqvar e : {eqvar eval_expr true e}.
Proof.
move=> π ls _ <-; elim: e=> [x|b|n|b e1 IH1 e2 IH2|e IH| |e IH|e IH|e IH] //=.
- rewrite renamemE /= renameT.
by case: (ls x)=> [v|] //=.
- by rewrite -IH1 -IH2; apply: eval_binop_eqvar.
- by rewrite -IH; case: eval_expr.
- by rewrite -IH; case: eval_expr.
by rewrite -IH; case: eval_expr.
Qed.
Global Instance match_value_eqvar
T {eT : nominalRel T}
π v1 v2 b11 b12 b21 b22 b31 b32 b41 b42 :
nomR π v1 v2 ->
nomR π b11 b12 ->
nomR π b21 b22 ->
nomR π b31 b32 ->
nomR π b41 b42 ->
nomR π
match v1 with
| VBool x => b11 x : T
| VNum x => b21 x
| VPtr x sz => b31 x sz
| VNil => b41
end
match v2 with
| VBool x => b12 x : T
| VNum x => b22 x
| VPtr x sz => b32 x sz
| VNil => b42
end.
Proof. by move=> <- ????; case: v1=> * /=; finsupp. Qed.
Global Instance match_int_eqvar
T {eT : nominalRel T}
π n1 n2 b11 b12 b21 b22 :
nomR π n1 n2 ->
nomR π b11 b12 ->
nomR π b21 b22 ->
nomR π
match n1 with
| Posz x => b11 x : T
| Negz x => b21 x
end
match n2 with
| Posz x => b12 x : T
| Negz x => b22 x
end.
Proof. by move=> <- ? ?; case: n1=> // n; finsupp. Qed.
(*
(* Trying to figure out the problem with unification *)
Inductive some_prop (T : eqType) := SomeProp.
Class foo (T : eqType) := foo_proof : some_prop T.
Instance foo_inst (T : choiceType) : foo T := SomeProp T.
Record bar := Bar {
bar_sort :> eqType;
_ : some_prop bar_sort
}.
Lemma bar_proof (B : bar) : some_prop B.
Proof. by case: B. Qed.
Definition bar_inst (T : choiceType) := @Bar T (SomeProp T).
Canonical bar_inst.
Lemma test_nat_eqType : some_prop nat_eqType.
Proof.
(* eapply bar_proof. *) (* Does not work (Unable to unify) *)
(* apply: foo_proof. *) (* Does work *)
(* apply: bar_proof. *) (* Does not work (Cannot apply lemma) *)
eapply foo_proof. (* Does work *)
Qed.
Lemma test_prod_eqType : some_prop (prod_eqType nat_eqType nat_eqType).
(* eapply bar_proof. *) (* Does not work (Unable to unify) *)
(* apply: foo_proof. *) (* Does not work (Could not fill dependent hole in apply) *)
(* apply: bar_proof. *) (* Does not work (Cannot apply lemma ) *)
eapply foo_proof. (* Application works, but cannot infer the instance of foo by itself *)
Abort.
Canonical my_choice := Eval hnf in [choiceType of prod_eqType nat_eqType nat_eqType].
Lemma test_prod_with_canonical : some_prop (prod_eqType nat_eqType nat_eqType).
(* eapply bar_proof. *) (* Does not work (Unable to unify) *)
(* apply: foo_proof. *) (* Does not work (Could not fill dependent hole in apply) *)
(* apply: bar_proof. *) (* Does not work (Cannot apply lemma ) *)
eapply foo_proof. (* Application works, but cannot infer the instance of foo by itself *)
Abort.
*)
Hint Extern 4 (@nomR ?S ?cS ?π (?f1 ?x1) (?f2 ?x2)) =>
let T := type of x1 in
let cT := constr:(_ : nominalRel T) in
eapply (@nomR_app T S cT cS π f1 f2 x1 x2) : typeclass_instances.
Global Instance eval_com_eqvar : {eqvar eval_com}.
Proof.
move=> π c1 c2 c1c2 s1 s2 s1s2 k _ <-; rewrite renameT.
elim: k π c1 c2 c1c2 s1 s2 s1s2 => [|k IH] π c _ <- s1 s2 s1s2 //=.
case: c=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] /=; by finsupp.
Qed.
Lemma eval_com_vars s c k :
fsubset (mod_vars_c c) (domm s.1) ->
pbind_res
(names s)
(fun s' => domm s'.1 = domm s.1)
(eval_com c s k).
Proof.
have sub: forall (T : ordType) (x : T) (X : {fset T}),
x \in X -> x |: X = X.
by move=> T x X Px; apply/fsetUidPr; rewrite fsub1set.
elim: k s c => [|k IH] /= s; first by [].
case=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] /=;
rewrite ?fsub1set ?fsubUset.
- by move=> Px _ [<-]; rewrite restrE0 domm_set sub.
- case: eval_expr => // p sz Px.
case: getm=> [v|] //= _ [<-]; by rewrite restrE0 domm_set sub.
- case: eval_expr=> // p sz _.
by rewrite /updm; case: getm=> [v|] //= _ [<-]; rewrite restrE0.
- case: eval_expr => [|[n|]| |] // Px _ [<-].
by rewrite /new pbindrE ?fdisjoints1 ?freshP //= domm_set sub.
- case: eval_expr => // p sz _.
case: ifP=> // _; case: ifP=> //= in_h1 _ [<-].
by rewrite restrE0.
- by move=> _ _ [<-]; rewrite restrE0.
- case/andP=> /IH vars_c1 vars_c2.
move: vars_c1; eapply pbind_res_bind; try by typeclasses eauto.
move=> /= s' ess'; move: vars_c2; rewrite -{1}ess' => /IH.
eapply pbind_res_impl; try by typeclasses eauto.
by move=> /= ? ->.
- case: eval_expr=> // - b.
by case/andP=> vars_c1 vars_c2; case: b; eapply IH; eauto.
case: eval_expr=> // - [] P; apply: IH; try by rewrite fsub0set.
by rewrite /= fsetUid.
Qed.
(* FIXME: Replacing [names A] by [A] below breaks typeclass inference. *)
Lemma eval_com_blocks A s c k :
fdisjoint (names (domm s.2)) A ->
pbind_res
(names A)
(fun s' => fdisjoint (names (domm s'.2)) A)
(eval_com c s k).
Proof.
elim: k s c => [|k IH] /= s //.
case=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] /=.
- by move=> dis _ [<-]; rewrite restrE0.
- case: eval_expr=> //= p sz; case: getm=> //= v dis _ [<-].
by rewrite restrE0.
- case: eval_expr=> //= p sz; rewrite /updm.
case get_p: getm=> [v|] //= dis _ [<-]; rewrite restrE0 /= domm_set.
suff/fsetUidPr ->: fsubset (fset1 p) (domm s.2) by [].
by rewrite fsub1set mem_domm get_p.
- case: eval_expr=> [| [n|] | |] //= dis _ [<-].
eapply pbindr_new; try by finsupp.
move=> i nin_A nin_s; rewrite restrE0 /=.
have {dis} dis: fdisjoint (i |: names (domm s.2)) A.
by rewrite fdisjointUl fdisjoint1s -{1}[A]namesfsnE nin_A.
apply: fdisjoint_trans dis.
rewrite domm_union namesfsU names_domm_mkblock !(fun_if, if_arg).
by rewrite fset0U fsubsetxx fsubsetUr if_same.
- case: eval_expr=> //= p sz; case: ifP=> //= _ dis; case: ifP=> //= _ _ [<-].
by rewrite restrE0 /=; apply: fdisjoint_trans dis; rewrite namesfs_subset // domm_filter.
- by move=> dis _ [<-]; rewrite restrE0 /=.
- move=> dis.
have := IH _ c1 dis.
by eapply pbind_res_bind; finsupp.
- by case: eval_expr=> // b; apply: IH.
- by case: eval_expr=> // b; apply: IH.
Qed.
Lemma frame_ok c s1 s2 k rs :
fsubset (vars_c c) (domm s1.1) ->
fdisjoint (names (domm s1.2)) (names (domm s2.2)) ->
eval_com c s1 k = Done rs ->
eval_com c (s1 ∪ s2) k =
Done (mapr (names s2) (stateu ^~ s2) rs).
Proof.
elim: k c s1 rs => [|k IH] //= c s1 rs.
case: c=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] /=;
rewrite ?fsubUset ?fsub1set.
- case/andP=> [x_in_vs sub] dis [<-] {rs}.
by rewrite restrE0 eval_expr_unionm // setm_union.
- case/andP=> [x_in_vs sub] dis.
rewrite eval_expr_unionm //; case: eval_expr=> //= p sz.
rewrite unionmE; case get_p: getm=> [v|] //= [<-] {rs}.
by rewrite maprE0 setm_union.
- case/andP=> [sub1 sub'] dis.
rewrite !eval_expr_unionm //; case: eval_expr=> //= p sz.
rewrite /updm unionmE; case: getm=> //= _ [<-] {rs}.
by rewrite maprE0 setm_union.
- case/andP=> [x_in_vs sub] dis.
rewrite eval_expr_unionm //; case: eval_expr=> [|[n|]| |] //= [<-] {rs}.
move: (fresh _) (freshP (names s1 :|: names s2)) => i.
rewrite in_fsetU !negb_or=> /andP [i1 i2].
rewrite [in RHS](@newE _ _ _ i) //.
(* FIXME: This massaging should not be necessary *)
rewrite namespE /=.
move els: (unionm s1.1 s2.1) => ls; move eh: (unionm s1.2 s2.2)=> h.
rewrite [in LHS](@newE _ _ _ i) -?{}els -?{}eh.
by rewrite maprE ?setm_union ?unionmA // fdisjoints1.
have: fsubset (names (s1 ∪ s2)) (names s1 :|: names s2).
eapply nom_finsuppP; finsupp.
by move=> /fsubsetP/(_ i)/contra; apply; rewrite in_fsetU negb_or i1.
- move=> sub dis.
rewrite !eval_expr_unionm //; case: eval_expr=> //= p sz.
case: ifP=> //= _; rewrite !domm_curry domm_union imfsetU in_fsetU.
case: ifP=> //= /imfsetP [p' in_h1 e_p] [<-] {rs}.
rewrite maprE0 filterm_union ?fdisjoint_names_domm // (_ : filterm _ s2.2 = s2.2) //.
have {p' e_p in_h1} in_h1 : p.1 \in names (domm s1.2).
by apply/namesfsP; exists p'=> //; rewrite e_p in_fsetU namesnE in_fset1 eqxx.
apply/eq_fmap=> p'; rewrite filtermE.
case get: (s2.2 p')=> [v|] //=.
have [e_p|] //= := altP (_ =P _).
suffices in_h2 : p.1 \in names (domm s2.2).
by move/fdisjointP/(_ _ in_h1): dis; rewrite in_h2.
apply/namesfsP; exists p'; first by apply/dommP; eauto.
by rewrite -e_p in_fsetU namesnE in_fset1 eqxx.
- by move=> _ dis [<-] {rs}; rewrite maprE0.
- case/andP=> [sub1 sub2] dis.
case ev_c1: eval_com => [rs1| |] //=.
case/(restrP (names s1 :|: names s2)):
rs1 ev_c1 => /= [A s' dis' sub] ev_c1.
move: dis'; rewrite fdisjointUl => /andP [dis1 dis2].
rewrite bindrE ?fdisjoint0s ?(IH _ _ (hide A (Restr s'))) //.
case ev_c2: eval_com => [rs2| |] //= [<-] {rs}.
rewrite maprE // bindrE ?fdisjoint0s //=.
rewrite (IH _ _ rs2) //= -?hide_mapr //.
have:= @eval_com_vars _ _ k (fsubset_trans (mod_vars_c_subset c1) sub1).
by rewrite ev_c1 pbind_resE hide_pbindr // restrE0 => ->.
have := @eval_com_blocks _ s1 c1 k dis.
rewrite ev_c1 pbind_resE.
have: fdisjoint (names (domm s2.2)) A.
by apply: fdisjoint_trans dis2; eapply nom_finsuppP; finsupp.
move: (names (domm s2.2)) => A' dis2'.
by rewrite pbindrE // namesfsnE.
- rewrite -andbA=> /and3P [sub_e sub_c1 sub_c2] dis_h1h2.
rewrite eval_expr_unionm //; case: eval_expr=> //= b ev_if.
by rewrite (IH _ _ rs) //; case: (b).
case/andP=> [sub_e sub_c] dis_h1h2.
rewrite eval_expr_unionm //; case: eval_expr=> //= b ev_if.
rewrite (IH _ _ rs) //; case: (b)=> //=; rewrite ?fsub0set //.
by rewrite !fsubUset sub_c sub_e.
Qed.
Lemma frame_loop c s1 s2 k :
fsubset (vars_c c) (domm s1.1) ->
fdisjoint (names (domm s1.2)) (names (domm s2.2)) ->
eval_com c s1 k = NotYet ->
eval_com c (s1 ∪ s2) k = NotYet.
Proof.
elim: k c s1 => [|k IH] //= c s1.
case: c=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] //=;
rewrite ?fsubUset ?fsub1set.
- by case: eval_expr=> //= p; case: getm.
- by case: eval_expr=> //= p; case: updm.
- by case: eval_expr=> [|[n|]| |].
- by case: eval_expr=> //= p; do 2![case: ifP=> //= _].
- case/andP=> [c1_ls1 c2_ls2] dis_h1_h2.
case ev_c1: eval_com=> [rs'| |] //=; last by rewrite IH.
case/(restrP (names s1 :|: names s2)): rs' ev_c1
=> /= A s1' disA subA ev_c1.
move: disA; rewrite fdisjointUl=> /andP [disA1 disA2].
rewrite bindrE ?fdisjoint0s // (frame_ok _ _ ev_c1) //.
rewrite maprE //= ?bindrE ?fdisjoint0s //.
case ev_c2: eval_com=> //= _; rewrite IH //.
have:= @eval_com_vars _ _ k (fsubset_trans (mod_vars_c_subset c1) c1_ls1).
by rewrite ev_c1 pbind_resE hide_pbindr // restrE0 => ->.
have := @eval_com_blocks _ s1 c1 k dis_h1_h2.
rewrite ev_c1 pbind_resE.
have: fdisjoint (names (domm s2.2)) A.
by apply: fdisjoint_trans disA2; eapply nom_finsuppP; finsupp.
move: (names (domm s2.2)) => A' disA2'.
by rewrite pbindrE // namesfsnE.
- rewrite -andbA => /and3P [e_ls1 c1_ls1 c2_ls2] dis_h1_h2.
rewrite eval_expr_unionm //=; case: eval_expr=> //= b ev_if.
by rewrite IH //; case: (b).
case/andP=> [e_ls1 c_ls1] dis_h1_h2; rewrite eval_expr_unionm //.
case: eval_expr=> //= b ev_while.
by rewrite IH //; case: (b)=> //=; rewrite ?fsub0set // !fsubUset e_ls1 c_ls1.
Qed.
Lemma get_mem_dis e s1 h2 p sz :
fdisjoint (names s1) (names (domm h2)) ->
eval_expr true e s1.1 = VPtr p sz ->
h2 p = None.
Proof.
move=> dis eval_e; case get_p: (h2 p)=> [v|] //.
move: (eval_expr_names true s1.1 e); rewrite eval_e namesvE.
have inNh2: p.1 \in names (domm h2).
apply/namesfsP; exists p; first by rewrite mem_domm get_p.
by apply/fsetUP; left; apply/namesnP.
rewrite fsub1set=> inNls1.
have inNs1: p.1 \in names s1 by rewrite in_fsetU inNls1.
by move/fdisjointP/(_ _ inNs1): dis; rewrite inNh2.
Qed.
Lemma frame_error c s1 s2 k :
fsubset (vars_c c) (domm s1.1) ->
fdisjoint (names s1) (names (domm s2.2)) ->
eval_com c s1 k = Error ->
eval_com c (s1 ∪ s2) k = Error.
Proof.
elim: k c s1 => [|k IH] //= c s1.
case: c=> [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] //=;
rewrite ?fsubUset ?fsub1set.
- case/andP=> [x_ls1 e_ls1] dis_s1_h2.
rewrite eval_expr_unionm //; case ev_e: eval_expr=> [| |p|] //=.
by rewrite unionmE (get_mem_dis dis_s1_h2 ev_e); case: getm.
- case/andP=> [e_ls1 e'_ls1] dis_s1_h2.
rewrite eval_expr_unionm //; case ev_e: eval_expr=> [| |p|] //=.
rewrite /updm unionmE (get_mem_dis dis_s1_h2 ev_e).
by case: getm.
- case/andP=> [x_ls1 e_ls1] dis_s1_h2.
by rewrite eval_expr_unionm //; case ev_e: eval_expr=> [|[n|]| |] //=.
- move=> e_ls1 dis_s1_h2.
rewrite eval_expr_unionm //; case ev_e: eval_expr=> [| |p|] //=.
case: ifP=> //= _; rewrite !domm_curry domm_union imfsetU in_fsetU.
case: ifP=> //= _ _; case: ifP=> //= /imfsetP /= [p' in_h2 e_p].
move: (eval_expr_names true s1.1 e); rewrite ev_e namesvE fsub1set.
move=> in_ls1; have in_Nh2 : p'.1 \in names (domm s2.2).
apply/namesfsP; exists p'=> //.
by rewrite in_fsetU namesnE in_fset1 eqxx.
move: dis_s1_h2; rewrite fdisjointC=> /fdisjointP/(_ _ in_Nh2).
by rewrite in_fsetU /= -e_p in_ls1.
- case/andP=> [c1_ls1 c2_ls2] dis_s1_h2.
case ev_c1: eval_com=> [rs'| |] //=; last by rewrite IH.
rewrite (@frame_ok _ _ _ _ rs') //.
case/(restrP (names s1 :|: names s2)): rs' ev_c1=> /= A s1' dis' sub.
move: dis'; rewrite fdisjointUl=> /andP [dis_s1_A dis_s2_A].
rewrite maprE ?bindrE ?fdisjoint0s //= => ev_c1.
case ev_c2: eval_com=> //=; rewrite IH //.
have:= @eval_com_vars _ _ k (fsubset_trans (mod_vars_c_subset c1) c1_ls1).
by rewrite ev_c1 pbind_resE hide_pbindr // restrE0 => ->.
have: fsubset (names (eval_com c1 s1 k)) (names s1).
by eapply nom_finsuppP; finsupp.
rewrite ev_c1 namesresE names_hider namesrE fsubDset => sub_s1'.
apply: fdisjoint_trans; first by eauto.
rewrite fdisjointUl dis_s1_h2 andbT fdisjointC.
apply: fdisjoint_trans; last by exact: dis_s2_A.
by eapply nom_finsuppP; finsupp.
apply: fdisjoint_trans; last by exact: dis_s1_h2.
by rewrite namespE /=; eapply nom_finsuppP; finsupp.
- case/andP=> [/andP [e_ls1 c1_ls1] c2_ls2] dis_s1_h2.
rewrite eval_expr_unionm //; case: eval_expr=> //= b ev_if.
by rewrite IH //; case: (b).
case/andP=> [e_ls1 c_ls1] dis_s1_h2.
rewrite eval_expr_unionm //; case: eval_expr=> //= b ev_if.
by rewrite IH // !fun_if if_arg /= !fsubUset c_ls1 e_ls1 fsub0set if_same.
Qed.
Corollary noninterference s1 s21 rs' s22 c k :
fsubset (vars_c c) (domm s1.1) ->
fdisjoint (names s1) (names (domm s21.2)) ->
fdisjoint (names (domm s1.2)) (names (domm s22.2)) ->
eval_com c (s1 ∪ s21) k = Done rs' ->
exists rs1',
[/\ eval_com c s1 k = Done rs1',
rs' = mapr (names s21) (stateu ^~ s21) rs1' &
eval_com c (s1 ∪ s22) k =
Done (mapr (names s22) (stateu ^~ s22) rs1')].
Proof.
move=> sub dis1 dis2 eval_c.
case eval_c': (eval_com c s1 k) => [rs1'| |] //=.
- exists rs1'; split; eauto.
move: eval_c; rewrite (frame_ok sub _ eval_c') => [[<-]//|] /=.
apply/(fdisjoint_trans _ dis1); eapply nom_finsuppP; finsupp.
by apply: frame_ok=> //.
- by rewrite (frame_error sub dis1 eval_c') in eval_c.
rewrite (frame_loop sub _ eval_c') // in eval_c.
apply/(fdisjoint_trans _ dis1); eapply nom_finsuppP; finsupp.
Qed.
Lemma eval_basic_restr c s k :
exists A,
eval_com c s k =
match basic.eval_com true c s k with
| Done s' => Done (hide A (Restr s'))
| Error => Error
| NotYet => NotYet
end.
Proof.
elim: k s c => /= [|k IH] s c; first by exists fset0.
case: c => [x e|x e|e e'|x e|e| |c1 c2|e c1 c2|e c] //=.
- by exists fset0; rewrite hide0.
- exists fset0; case: eval_expr=> //= p; case: getm=> //= v.
by rewrite hide0.
- exists fset0.
by case: eval_expr=> //= p; case: updm=> //= h'; rewrite hide0.
- exists (fset1 (fresh (names s))).
by case: eval_expr=> [|[n|] | |] //=.
- exists fset0.
case: eval_expr=> //= p; case: ifP=> //= _.
by case: ifP=> //= _; rewrite hide0.
- by exists fset0; rewrite hide0.
- have [A ->] := IH s c1.
case: basic.eval_com => [s'| |]; eauto.
have [A' e] := IH s' c2.
exists (A :|: A'); rewrite /= bindrE ?fdisjoint0s // e.
by case: basic.eval_com=> //= s''; rewrite -hideU.
- case: eval_expr; try by exists fset0.
by case; apply: IH.
case: eval_expr; try by exists fset0.
by case; apply: IH.
Qed.
Lemma mod_vars_cP s rs' c x k :
eval_com c s k = Done rs' ->
x \notin mod_vars_c c ->
mapr fset0 (fun s => s.1 x) rs' = Restr (s.1 x).
Proof.
elim: k s c rs' => /= [|k IH] s c rs' //.
case: c => [x' e|x' e|e e'|x' e|e| |c1 c2|e c1 c2|e c] //=;
rewrite ?in_fset1.
- by move=> [<-]; rewrite maprE0 //= setmE => /negbTE ->.
- case: eval_expr=> //= p sz; case: getm=> //= v [<-].
by rewrite maprE0 //= setmE => /negbTE ->.
- case: eval_expr=> //= p sz; case: updm=> //= h' [<-].
by rewrite maprE0 //= setmE.
- case: eval_expr=> [|[n|]| |] //= [<-].
rewrite /new; move: (fresh _) (freshP (names s)) => i nin_i.
rewrite !maprE ?fdisjoint0s //= setmE => /negbTE ->.
rewrite hideD // namesrE fdisjointC; apply: (@fdisjoint_trans _ _ (names s)).
eapply nom_finsuppP; finsupp.
by rewrite fdisjoints1.
- case: eval_expr=> // p sz; case: ifP => // _; case: ifP=> // _ [<-].
by rewrite maprE0.
- by move=> [<-] _; rewrite maprE0.
- case ev1: eval_com=> [rs''| |] //=.
case/(restrP fset0): rs'' ev1 => /= A s'' _ sub ev1.
rewrite bindrE ?fdisjoint0s //.
case ev2: eval_com=> [rs''| |] // [<-] {rs'}.
rewrite in_fsetU => /norP [nin1 nin2].
rewrite -hide_mapr ?fdisjoint0s // (IH _ _ _ ev2 nin2).
by rewrite -(IH _ _ _ ev1 nin1) maprE ?fdisjoint0s.
- rewrite in_fsetU; case: eval_expr=> // b ev /norP [nin1 nin2].
by apply: IH; eauto; case: (b).
- case: eval_expr=> // b ev nin.
apply: IH; eauto.
by case: (b); rewrite ?in_fset0 //= fsetUid.
Qed.
End Structured.