Skip to content

Latest commit

 

History

History
30 lines (27 loc) · 1.6 KB

README.md

File metadata and controls

30 lines (27 loc) · 1.6 KB

Setting up the Configurations

Here we describe the different parameters set in each configuration file:

  • frame_dir: Directory where frames are stored.
  • save_dir: Directory to save dataset information.
  • store_dir: Directory to save model checkpoints, predictions, etc.
  • store_mode: 'store' if it's the first time running the script to prepare and store dataset information, or 'load' to load previously stored information.
  • batch_size: Batch size.
  • clip_len: Length of the clips in number of frames.
  • crop_dim: Dimension to crop the frames (if needed).
  • dataset: Name of the dataset ('finediving', 'fs_comp', or 'fs_perf').
  • radi_displacement: Radius of displacement used.
  • epoch_num_frames: Number of frames used per epoch.
  • feature_arch: Feature extractor architecture ('rny002_gsf' or 'rny008_gsf').
  • learning_rate: Learning rate.
  • mixup: Boolean indicating whether to use mixup or not.
  • modality: Input modality used ('rgb').
  • num_classes: Number of classes for the current dataset.
  • num_epochs: Number of epochs for training.
  • warm_up_epochs: Number of warm-up epochs.
  • start_val_epoch: Epoch where validation evaluation starts.
  • temporal_arch: Temporal architecture used ('ed_sgp_mixer').
  • n_layers: Number of blocks/layers used for the temporal architecture.
  • sgp_ks: Kernel size of the SGP and SGP-Mixer layers.
  • sgp_r: $r$ factor in SGP and SGP-Mixer layers.
  • test_only: Boolean indicating if only inference is performed or training + inference.
  • criterion: Criterion used for validation evaluation ('map', 'loss').
  • num_workers: Number of workers.