-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
2834 lines (2482 loc) · 102 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from typing import List, Optional, Tuple, Dict, Union, Any, overload, Sequence, NamedTuple
import collections
import os
import re
import unicodedata
import itertools
import requests
import copy
import json
from contextlib import contextmanager
from collections import OrderedDict, UserDict
from enum import Enum
import numpy as np
from utils import cached_path, hf_bucket_url, is_remote_url, is_tf_available, is_torch_available
from tokenizers import AddedToken
from tokenizers import Encoding as EncodingFast
VERY_LARGE_INTEGER = int(1e30) # This is used to set the max input length for a model with infinite size input
LARGE_INTEGER = int(1e20) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
FULL_TOKENIZER_FILE = "tokenizer.json"
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt"
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"bert-base-uncased": 512
}
PRETRAINED_INIT_CONFIGURATION = {
"bert-base-uncased": {"do_lower_case": True}
}
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]
class ExplicitEnum(Enum):
@classmethod
def _missing_(cls, value):
raise ValueError(
"%r is not a valid %s, please select one of %s"
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
)
class TruncationStrategy(ExplicitEnum):
ONLY_FIRST = "only_first"
ONLY_SECOND = "only_second"
LONGEST_FIRST = "longest_first"
DO_NOT_TRUNCATE = "do_not_truncate"
class PaddingStrategy(ExplicitEnum):
LONGEST = "longest"
MAX_LENGTH = "max_length"
DO_NOT_PAD = "do_not_pad"
class TensorType(ExplicitEnum):
PYTORCH = "pt"
TENSORFLOW = "tf"
NUMPY = "np"
JAX = "jax"
class CharSpan(NamedTuple):
start: int
end: int
class TokenSpan(NamedTuple):
start: int
end: int
def to_py_obj(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
"""
if isinstance(obj, (dict, BatchEncoding)):
return {k: to_py_obj(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [to_py_obj(o) for o in obj]
elif is_tf_available() and _is_tensorflow(obj):
return obj.numpy().tolist()
elif is_torch_available() and _is_torch(obj):
return obj.detach().cpu().tolist()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def _is_torch(x):
import torch
return isinstance(x, torch.Tensor)
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
def _is_end_of_word(text):
last_char = text[-1]
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))
def _is_start_of_word(text):
first_char = text[0]
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))
def _is_punctuation(char):
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def _is_whitespace(char):
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def load_vocab(vocab_file):
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BatchEncoding(UserDict):
def __init__(
self,
data: Optional[Dict[str, Any]] = None,
encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None,
tensor_type: Union[None, str, TensorType] = None,
prepend_batch_axis: bool = False,
n_sequences: Optional[int] = None,
):
super().__init__(data)
if isinstance(encoding, EncodingFast):
encoding = [encoding]
self._encodings = encoding
if n_sequences is None and encoding is not None and len(encoding):
n_sequences = encoding[0].n_sequences
self._n_sequences = n_sequences
self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis)
@property
def n_sequences(self) -> Optional[int]:
return self._n_sequences
@property
def is_fast(self) -> bool:
return self._encodings is not None
def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]:
if isinstance(item, str):
return self.data[item]
elif self._encodings is not None:
return self._encodings[item]
else:
raise KeyError(
"Indexing with integers (to access backend Encoding for a given batch index) "
"is not available when using Python based tokenizers"
)
def __getattr__(self, item: str):
try:
return self.data[item]
except KeyError:
raise AttributeError
def __getstate__(self):
return {"data": self.data, "encodings": self._encodings}
def __setstate__(self, state):
if "data" in state:
self.data = state["data"]
if "encodings" in state:
self._encodings = state["encodings"]
def keys(self):
return self.data.keys()
def values(self):
return self.data.values()
def items(self):
return self.data.items()
# After this point:
# Extended properties and methods only available for fast (Rust-based) tokenizers
# provided by HuggingFace tokenizers library.
@property
def encodings(self) -> Optional[List[EncodingFast]]:
return self._encodings
def tokens(self, batch_index: int = 0) -> List[str]:
if not self._encodings:
raise ValueError("tokens() is not available when using Python-based tokenizers")
return self._encodings[batch_index].tokens
def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]:
if not self._encodings:
raise ValueError("sequence_ids() is not available when using Python-based tokenizers")
return self._encodings[batch_index].sequence_ids
def words(self, batch_index: int = 0) -> List[Optional[int]]:
if not self._encodings:
raise ValueError("words() is not available when using Python-based tokenizers")
return self.word_ids(batch_index)
def word_ids(self, batch_index: int = 0) -> List[Optional[int]]:
if not self._encodings:
raise ValueError("word_ids() is not available when using Python-based tokenizers")
return self._encodings[batch_index].word_ids
def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
if not self._encodings:
raise ValueError("token_to_sequence() is not available when using Python based tokenizers")
if token_index is not None:
batch_index = batch_or_token_index
else:
batch_index = 0
token_index = batch_or_token_index
if batch_index < 0:
batch_index = self._batch_size + batch_index
if token_index < 0:
token_index = self._seq_len + token_index
return self._encodings[batch_index].token_to_sequence(token_index)
def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
if not self._encodings:
raise ValueError("token_to_word() is not available when using Python based tokenizers")
if token_index is not None:
batch_index = batch_or_token_index
else:
batch_index = 0
token_index = batch_or_token_index
if batch_index < 0:
batch_index = self._batch_size + batch_index
if token_index < 0:
token_index = self._seq_len + token_index
return self._encodings[batch_index].token_to_word(token_index)
def word_to_tokens(
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
) -> Optional[TokenSpan]:
if not self._encodings:
raise ValueError("word_to_tokens() is not available when using Python based tokenizers")
if word_index is not None:
batch_index = batch_or_word_index
else:
batch_index = 0
word_index = batch_or_word_index
if batch_index < 0:
batch_index = self._batch_size + batch_index
if word_index < 0:
word_index = self._seq_len + word_index
span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index)
return TokenSpan(*span) if span is not None else None
def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan:
if not self._encodings:
raise ValueError("token_to_chars() is not available when using Python based tokenizers")
if token_index is not None:
batch_index = batch_or_token_index
else:
batch_index = 0
token_index = batch_or_token_index
return CharSpan(*(self._encodings[batch_index].token_to_chars(token_index)))
def char_to_token(
self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0
) -> int:
if not self._encodings:
raise ValueError("char_to_token() is not available when using Python based tokenizers")
if char_index is not None:
batch_index = batch_or_char_index
else:
batch_index = 0
char_index = batch_or_char_index
return self._encodings[batch_index].char_to_token(char_index, sequence_index)
def word_to_chars(
self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
) -> CharSpan:
if not self._encodings:
raise ValueError("word_to_chars() is not available when using Python based tokenizers")
if word_index is not None:
batch_index = batch_or_word_index
else:
batch_index = 0
word_index = batch_or_word_index
return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index)))
def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int:
if not self._encodings:
raise ValueError("char_to_word() is not available when using Python based tokenizers")
if char_index is not None:
batch_index = batch_or_char_index
else:
batch_index = 0
char_index = batch_or_char_index
return self._encodings[batch_index].char_to_word(char_index, sequence_index)
def convert_to_tensors(
self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False
):
if tensor_type is None:
return self
# Convert to TensorType
if not isinstance(tensor_type, TensorType):
tensor_type = TensorType(tensor_type)
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
)
import tensorflow as tf
as_tensor = tf.constant
is_tensor = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
import torch
as_tensor = torch.tensor
is_tensor = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
import jax.numpy as jnp # noqa: F811
as_tensor = jnp.array
is_tensor = _is_jax
else:
as_tensor = np.asarray
is_tensor = _is_numpy
# (mfuntowicz: This code is unreachable)
# else:
# raise ImportError(
# "Unable to convert output to tensors format {}".format(tensor_type)
# )
# Do the tensor conversion in batch
for key, value in self.items():
try:
if prepend_batch_axis:
value = [value]
if not is_tensor(value):
tensor = as_tensor(value)
# Removing this for now in favor of controlling the shape with `prepend_batch_axis`
# # at-least2d
# if tensor.ndim > 2:
# tensor = tensor.squeeze(0)
# elif tensor.ndim < 2:
# tensor = tensor[None, :]
self[key] = tensor
except: # noqa E722
if key == "overflowing_tokens":
raise ValueError(
"Unable to create tensor returning overflowing tokens of different lengths. "
"Please see if a fast version of this tokenizer is available to have this feature available."
)
raise ValueError(
"Unable to create tensor, you should probably activate truncation and/or padding "
"with 'padding=True' 'truncation=True' to have batched tensors with the same length."
)
return self
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
# This check catches things like APEX blindly calling "to" on all inputs to a module
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
# into a HalfTensor
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
self.data = {k: v.to(device=device) for k, v in self.data.items()}
return self
class SpecialTokensMixin:
SPECIAL_TOKENS_ATTRIBUTES = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
"additional_special_tokens",
]
def __init__(self, verbose=True, **kwargs):
self._bos_token = None
self._eos_token = None
self._unk_token = None
self._sep_token = None
self._pad_token = None
self._cls_token = None
self._mask_token = None
self._pad_token_type_id = 0
self._additional_special_tokens = []
self.verbose = verbose
# We directly set the hidden value to allow initialization with special tokens
# which are not yet in the vocabulary. Necessary for serialization/de-serialization
# TODO clean this up at some point (probably by switching to fast tokenizers)
for key, value in kwargs.items():
if value is None:
continue
if key in self.SPECIAL_TOKENS_ATTRIBUTES:
if key == "additional_special_tokens":
assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple"
assert all(isinstance(t, str) for t in value), "One of the tokens is not a string"
setattr(self, key, value)
elif isinstance(value, (str, AddedToken)):
setattr(self, key, value)
else:
raise TypeError(
"special token {} has to be either str or AddedToken but got: {}".format(key, type(value))
)
def sanitize_special_tokens(self) -> int:
return self.add_tokens(self.all_special_tokens_extended, special_tokens=True)
def add_special_tokens(self, special_tokens_dict: Dict[str, Union[str, AddedToken]]) -> int:
if not special_tokens_dict:
return 0
added_tokens = 0
for key, value in special_tokens_dict.items():
assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token"
setattr(self, key, value)
if key == "additional_special_tokens":
assert isinstance(value, (list, tuple)) and all(
isinstance(t, (str, AddedToken)) for t in value
), f"Tokens {value} for key {key} should all be str or AddedToken instances"
added_tokens += self.add_tokens(value, special_tokens=True)
else:
assert isinstance(
value, (str, AddedToken)
), f"Token {value} for key {key} should be a str or an AddedToken instance"
added_tokens += self.add_tokens([value], special_tokens=True)
return added_tokens
def add_tokens(
self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False
) -> int:
if not new_tokens:
return 0
if not isinstance(new_tokens, (list, tuple)):
new_tokens = [new_tokens]
return self._add_tokens(new_tokens, special_tokens=special_tokens)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
raise NotImplementedError
@property
def bos_token(self) -> str:
if self._bos_token is None and self.verbose:
return None
return str(self._bos_token)
@property
def eos_token(self) -> str:
if self._eos_token is None and self.verbose:
return None
return str(self._eos_token)
@property
def unk_token(self) -> str:
if self._unk_token is None and self.verbose:
return None
return str(self._unk_token)
@property
def sep_token(self) -> str:
if self._sep_token is None and self.verbose:
return None
return str(self._sep_token)
@property
def pad_token(self) -> str:
if self._pad_token is None and self.verbose:
return None
return str(self._pad_token)
@property
def cls_token(self) -> str:
if self._cls_token is None and self.verbose:
return None
return str(self._cls_token)
@property
def mask_token(self) -> str:
if self._mask_token is None and self.verbose:
return None
return str(self._mask_token)
@property
def additional_special_tokens(self) -> List[str]:
if self._additional_special_tokens is None and self.verbose:
return None
return [str(tok) for tok in self._additional_special_tokens]
@bos_token.setter
def bos_token(self, value):
self._bos_token = value
@eos_token.setter
def eos_token(self, value):
self._eos_token = value
@unk_token.setter
def unk_token(self, value):
self._unk_token = value
@sep_token.setter
def sep_token(self, value):
self._sep_token = value
@pad_token.setter
def pad_token(self, value):
self._pad_token = value
@cls_token.setter
def cls_token(self, value):
self._cls_token = value
@mask_token.setter
def mask_token(self, value):
self._mask_token = value
@additional_special_tokens.setter
def additional_special_tokens(self, value):
self._additional_special_tokens = value
@property
def bos_token_id(self) -> Optional[int]:
if self._bos_token is None:
return None
return self.convert_tokens_to_ids(self.bos_token)
@property
def eos_token_id(self) -> Optional[int]:
if self._eos_token is None:
return None
return self.convert_tokens_to_ids(self.eos_token)
@property
def unk_token_id(self) -> Optional[int]:
if self._unk_token is None:
return None
return self.convert_tokens_to_ids(self.unk_token)
@property
def sep_token_id(self) -> Optional[int]:
if self._sep_token is None:
return None
return self.convert_tokens_to_ids(self.sep_token)
@property
def pad_token_id(self) -> Optional[int]:
if self._pad_token is None:
return None
return self.convert_tokens_to_ids(self.pad_token)
@property
def pad_token_type_id(self) -> int:
return self._pad_token_type_id
@property
def cls_token_id(self) -> Optional[int]:
if self._cls_token is None:
return None
return self.convert_tokens_to_ids(self.cls_token)
@property
def mask_token_id(self) -> Optional[int]:
if self._mask_token is None:
return None
return self.convert_tokens_to_ids(self.mask_token)
@property
def additional_special_tokens_ids(self) -> List[int]:
return self.convert_tokens_to_ids(self.additional_special_tokens)
@bos_token_id.setter
def bos_token_id(self, value):
self._bos_token = self.convert_tokens_to_ids(value)
@eos_token_id.setter
def eos_token_id(self, value):
self._eos_token = self.convert_tokens_to_ids(value)
@unk_token_id.setter
def unk_token_id(self, value):
self._unk_token = self.convert_tokens_to_ids(value)
@sep_token_id.setter
def sep_token_id(self, value):
self._sep_token = self.convert_tokens_to_ids(value)
@pad_token_id.setter
def pad_token_id(self, value):
self._pad_token = self.convert_tokens_to_ids(value)
@cls_token_id.setter
def cls_token_id(self, value):
self._cls_token = self.convert_tokens_to_ids(value)
@mask_token_id.setter
def mask_token_id(self, value):
self._mask_token = self.convert_tokens_to_ids(value)
@additional_special_tokens_ids.setter
def additional_special_tokens_ids(self, values):
self._additional_special_tokens = [self.convert_tokens_to_ids(value) for value in values]
@property
def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]:
set_attr = {}
for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
attr_value = getattr(self, "_" + attr)
if attr_value:
set_attr[attr] = str(attr_value)
return set_attr
@property
def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]:
set_attr = {}
for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
attr_value = getattr(self, "_" + attr)
if attr_value:
set_attr[attr] = attr_value
return set_attr
@property
def all_special_tokens(self) -> List[str]:
all_toks = [str(s) for s in self.all_special_tokens_extended]
return all_toks
@property
def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]:
all_toks = []
set_attr = self.special_tokens_map_extended
for attr_value in set_attr.values():
all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value])
all_toks = list(OrderedDict.fromkeys(all_toks))
return all_toks
@property
def all_special_ids(self) -> List[int]:
all_toks = self.all_special_tokens
all_ids = self.convert_tokens_to_ids(all_toks)
return all_ids
class PreTrainedTokenizerBase(SpecialTokensMixin):
vocab_files_names: Dict[str, str] = {}
pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {}
pretrained_init_configuration: Dict[str, Dict[str, Any]] = {}
max_model_input_sizes: Dict[str, Optional[int]] = {}
# first name has to correspond to main model input name
# to make sure `tokenizer.pad(...)` works correctly
model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"]
padding_side: str = "right"
slow_tokenizer_class = None
def __init__(self, **kwargs):
# inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
self.init_inputs = ()
self.init_kwargs = copy.deepcopy(kwargs)
self.name_or_path = kwargs.pop("name_or_path", "")
# For backward compatibility we fallback to set model_max_length from max_len if provided
model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None))
self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER
# Padding side is right by default and overridden in subclasses. If specified in the kwargs, it is changed.
self.padding_side = kwargs.pop("padding_side", self.padding_side)
assert self.padding_side in [
"right",
"left",
], f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}"
self.model_input_names = kwargs.pop("model_input_names", self.model_input_names)
self.deprecation_warnings = (
{}
) # Use to store when we have already noticed a deprecation warning (avoid overlogging).
super().__init__(**kwargs)
@property
def max_len_single_sentence(self) -> int:
return self.model_max_length - self.num_special_tokens_to_add(pair=False)
@property
def max_len_sentences_pair(self) -> int:
return self.model_max_length - self.num_special_tokens_to_add(pair=True)
@max_len_single_sentence.setter
def max_len_single_sentence(self, value) -> int:
# For backward compatibility, allow to try to setup 'max_len_single_sentence'.
if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose:
self.deprecation_warnings["max_len_single_sentence"] = True
else:
raise ValueError(
"Setting 'max_len_single_sentence' is now deprecated. " "This value is automatically set up."
)
@max_len_sentences_pair.setter
def max_len_sentences_pair(self, value) -> int:
# For backward compatibility, allow to try to setup 'max_len_sentences_pair'.
if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose:
self.deprecation_warnings["max_len_sentences_pair"] = True
else:
raise ValueError(
"Setting 'max_len_sentences_pair' is now deprecated. " "This value is automatically set up."
)
def __repr__(self) -> str:
return (
f"{'PreTrainedTokenizerFast' if self.is_fast else 'PreTrainedTokenizer'}(name_or_path='{self.name_or_path}', "
f"vocab_size={self.vocab_size}, model_max_len={self.model_max_length}, is_fast={self.is_fast}, "
f"padding_side='{self.padding_side}', special_tokens={self.special_tokens_map_extended})"
)
def get_vocab(self) -> Dict[str, int]:
raise NotImplementedError()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
s3_models = list(cls.max_model_input_sizes.keys())
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
vocab_files = {}
init_configuration = {}
if pretrained_model_name_or_path in s3_models:
# Get the vocabulary from AWS S3 bucket
for file_id, map_list in cls.pretrained_vocab_files_map.items():
vocab_files[file_id] = map_list[pretrained_model_name_or_path]
if (
cls.pretrained_init_configuration
and pretrained_model_name_or_path in cls.pretrained_init_configuration
):
init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path].copy()
else:
# Get the vocabulary from local files
if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
if len(cls.vocab_files_names) > 1:
raise ValueError(
"Calling {}.from_pretrained() with the path to a single file or url is not supported."
"Use a model identifier or the path to a directory instead.".format(cls.__name__)
)
file_id = list(cls.vocab_files_names.keys())[0]
vocab_files[file_id] = pretrained_model_name_or_path
else:
# At this point pretrained_model_name_or_path is either a directory or a model identifier name
additional_files_names = {
"added_tokens_file": ADDED_TOKENS_FILE,
"special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE,
"tokenizer_config_file": TOKENIZER_CONFIG_FILE,
"tokenizer_file": FULL_TOKENIZER_FILE,
}
# Look for the tokenizer files
for file_id, file_name in {**cls.vocab_files_names, **additional_files_names}.items():
if os.path.isdir(pretrained_model_name_or_path):
if subfolder is not None:
full_file_name = os.path.join(pretrained_model_name_or_path, subfolder, file_name)
else:
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
if not os.path.exists(full_file_name):
full_file_name = None
else:
full_file_name = hf_bucket_url(
pretrained_model_name_or_path,
filename=file_name,
subfolder=subfolder,
revision=revision,
mirror=None,
)
vocab_files[file_id] = full_file_name
# Get files from url, cache, or disk depending on the case
resolved_vocab_files = {}
unresolved_files = []
for file_id, file_path in vocab_files.items():
if file_path is None:
resolved_vocab_files[file_id] = None
else:
try:
try:
resolved_vocab_files[file_id] = cached_path(
file_path,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except FileNotFoundError as error:
if local_files_only:
unresolved_files.append(file_id)
else:
raise error
except requests.exceptions.HTTPError as err:
if "404 Client Error" in str(err):
resolved_vocab_files[file_id] = None
else:
raise err
if all(full_file_name is None for full_file_name in resolved_vocab_files.values()):
msg = (
f"Can't load tokenizer for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing relevant tokenizer files\n\n"
)
raise EnvironmentError(msg)
for file_id, file_path in vocab_files.items():
if file_id not in resolved_vocab_files:
continue
return cls._from_pretrained(
resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs
)
@classmethod
def _from_pretrained(
cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, **kwargs
):
# We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json
# file or if `from_slow` is set to True.
from_slow = kwargs.get("from_slow", False)
has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None
if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None:
slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained(
copy.deepcopy(resolved_vocab_files),
pretrained_model_name_or_path,
copy.deepcopy(init_configuration),
*init_inputs,
**(copy.deepcopy(kwargs)),
)
else:
slow_tokenizer = None
# Prepare tokenizer initialization kwargs
# Did we saved some inputs and kwargs to reload ?
tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None)
if tokenizer_config_file is not None:
with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
init_kwargs = json.load(tokenizer_config_handle)
saved_init_inputs = init_kwargs.pop("init_inputs", ())
if not init_inputs:
init_inputs = saved_init_inputs
else:
init_kwargs = init_configuration
# Update with newly provided kwargs
init_kwargs.update(kwargs)
# Convert AddedTokens serialized as dict to class instances
def convert_added_tokens(obj: Union[AddedToken, Any]):
if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken":
obj.pop("__type")
return AddedToken(**obj)
elif isinstance(obj, (list, tuple)):
return list(convert_added_tokens(o) for o in obj)
elif isinstance(obj, dict):
return {k: convert_added_tokens(v) for k, v in obj.items()}
return obj
init_kwargs = convert_added_tokens(init_kwargs)
# Set max length if needed
if pretrained_model_name_or_path in cls.max_model_input_sizes:
# if we're using a pretrained model, ensure the tokenizer
# wont index sequences longer than the number of positional embeddings
model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path]
if model_max_length is not None and isinstance(model_max_length, (int, float)):
init_kwargs["model_max_length"] = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length)
# Merge resolved_vocab_files arguments in init_kwargs.
added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None)
for args_name, file_path in resolved_vocab_files.items():
if args_name not in init_kwargs:
init_kwargs[args_name] = file_path
if slow_tokenizer is not None:
init_kwargs["__slow_tokenizer"] = slow_tokenizer
init_kwargs["name_or_path"] = pretrained_model_name_or_path
# Instantiate tokenizer.
try:
tokenizer = cls(*init_inputs, **init_kwargs)
except OSError:
raise OSError(
"Unable to load vocabulary from file. "
"Please check that the provided vocabulary is accessible and not corrupted."
)
# Save inputs and kwargs for saving and re-loading with ``save_pretrained``
# Removed: Now done at the base class level
# tokenizer.init_inputs = init_inputs
# tokenizer.init_kwargs = init_kwargs
# If there is a complementary special token map, load it
special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None)
if special_tokens_map_file is not None:
with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle:
special_tokens_map = json.load(special_tokens_map_handle)
for key, value in special_tokens_map.items():
if isinstance(value, dict):
value = AddedToken(**value)
elif isinstance(value, list):
value = [AddedToken(**token) if isinstance(token, dict) else token for token in value]