-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathneural.cpp
206 lines (181 loc) · 6.69 KB
/
neural.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <cstdlib>
#include <math.h>
#include <iostream>
#include <cstdlib>
typedef struct node{
int num_inputs;
float *weights;
float *inputs;
float *errors;
float output;
} node;
typedef struct layer{
int num_nodes;
node *chr;
} layer;
using namespace std;
class neural{
private:
int num_inputs;
int num_outputs;
int num_layers;
int num_weights;
int num_hid_nodes;
float leaning_rate;
layer *layers;
float *weights;
public:
neural();
neural(int in, int out, int num, int hn, float lrate);
void init();
void put_weights(float *weights);
float* feed(float *inputs);
void learn(float *dout);
float get_weighted_error(int l, int in);
~neural();
};
neural :: neural(){
//constructor
}
neural :: neural(int in, int out, int num, int hn, float lrate){
num_inputs = in;
num_outputs = out;
num_layers = num;
num_hid_nodes = hn;
num_weights = 0;
leaning_rate = lrate;
layers = (layer *)malloc(sizeof(layer) * num); //Memory Allocation for layers struct
layers[0].num_nodes = in; //num_modes takes num_input value
layers[0].chr = (node *)malloc(sizeof(node) * in); //chr node memory allocation
for(int i = 0; i < in; i++){
(layers[0].chr[i]).num_inputs = 1; //put 1 as num_inputs of each chr of lay0
num_weights += 1; //increment num_weight by 1
(layers[0].chr[i]).weights = (float *)malloc(sizeof(float) * (1)); //Memory Allocation for weights
(layers[0].chr[i]).inputs = (float *)malloc(sizeof(float) * (1)); //Memory Allocation for inputs
(layers[0].chr[i]).errors = (float *)malloc(sizeof(float) * (1)); //Memory Allocation for errors
for(int e = 0; e < 1; e++) (layers[0].chr[i]).errors[e] = 0.0; // set 0.0 error initially
}
// Hidden layers to hn value
for(int i = 1; i < num - 1; i++){
layers[i].chr = (node *)malloc(sizeof(node) * hn); //Memory Allocation for chr node of lay_i with hn value
layers[i].num_nodes = hn; //Set hn to num_nodes for each layer
int nd = layers[i - 1].num_nodes; // set nd as previous layers num_nodes value
for(int j = 0; j < hn; j++){
(layers[i].chr[j]).num_inputs = nd + 1; //set num_inputs of node chr_j of lay_i to nd+1
num_weights += nd + 1; //Increase num_weight with nd + 1
(layers[i].chr[j]).weights = (float *)malloc(sizeof(float) * (nd + 1));
(layers[i].chr[j]).inputs = (float *)malloc(sizeof(float) * (nd + 1));
(layers[i].chr[j]).errors = (float *)malloc(sizeof(float) * (nd + 1));
/*
Memory allocation of chr_j of lay_i to nd+1 vlaue for weights,inputs and errors
*/
for(int e = 0; e < nd + 1; e++) (layers[i].chr[j]).errors[e] = 0.0;
}
}
int nd = layers[num - 2].num_nodes; //set nd to num_nodes of lay_num-2
layers[num - 1].num_nodes = out; //set num_nodes of lay_num-1 to out
layers[num - 1].chr = (node *)malloc(sizeof(node) * out); // set char of lay_num-1 for memory allocation to out
for(int i = 0; i < out; i++){
(layers[num - 1].chr[i]).num_inputs = nd + 1; //set num_inputs of chr_i of lay_num-1 to nd+1
num_weights += nd + 1; //increment of num_weights to nd +1
(layers[num - 1].chr[i]).weights = (float *)malloc(sizeof(float) * (nd + 1));
(layers[num - 1].chr[i]).inputs = (float *)malloc(sizeof(float) * (nd + 1));
(layers[num - 1].chr[i]).errors = (float *)malloc(sizeof(float) * (nd + 1));
/*
Memory Allocation of weights,inputs and errors of chr_i of lay_num-1 to nd + 1
*/
for(int e = 0; e < nd + 1; e++) (layers[num - 1].chr[i]).errors[e] = 0.0; //Set error to 0.0 of chr_i of lay_num-1
}
weights = (float *)malloc(sizeof(float) * num_weights); //Memory Allocation of weights to num_weights
}
void neural :: init(){
float weights[num_weights];
for(int i = 0; i < num_weights; i++){
weights[i] = (float)rand() / (float)RAND_MAX - 0.5; //Setup weight_i to rand variable by rand_max
}
put_weights(weights);
for(int i = num_layers - 2; i >= 0; i--){
for(int j = 0; j < layers[i].num_nodes ; j++){
for(int k = 0; k < (layers[i].chr[j]).num_inputs; k++){
(layers[i].chr[j]).weights[k] = 1; //set weight_k ie num_inputs range for chr_j of layers_i to 1
}
}
}
}
void neural :: put_weights(float *weights){
int n = 0;
for(int i = 0; i < num_layers; i++){
for(int j = 0; j < layers[i].num_nodes; j++){
for(int k = 0; k < (layers[i].chr[j]).num_inputs; k++){
(layers[i].chr[j]).weights[k] = weights[n]; //set weight_k ie num_inputs range for chr_j of layers_i to 1 to weight_n
n++; //N increment
}
}
}
}
float* neural :: feed(float *inputs){
int n = 0;
float *outputs;
for(int i = 0; i < num_layers; i++){
outputs = (float *)malloc(sizeof(float) * layers[i].num_nodes + 1); //Set Memory Allocation to num_nodes
for(int j = 0; j < layers[i].num_nodes; j++){
float sum = 0.0;
if(i == 0){
(layers[i].chr[j]).inputs[0] = inputs[j]; //set lay_i.chr_j.inp[0] layer to input{j}
sum = (layers[i].chr[j]).weights[0] * inputs[j]; //Set sum to weight(0) * input(j)
}else{
//for other layers
for(int k = 0; k < (layers[i].chr[j]).num_inputs; k++){
(layers[i].chr[j]).inputs[k] = inputs[k]; //set input(k)
sum += (layers[i].chr[j]).weights[k] * inputs[k]; //increment sum to sum + weight(k) * input(k)
}
}
outputs[j] = sum; //Set output to sum
(layers[i].chr[j]).output = outputs[j]; //Set layer output to output(j)
}
outputs[layers[i].num_nodes] = -1.0; //Set output(num_nodes layer(i)) to -1.0
inputs = outputs; //set input to output for next layer
}
return outputs;
}
void neural :: learn(float *dout){
int tmp = num_layers - 1;
for(int j = 0; j < layers[tmp].num_nodes; j++){
for(int k = 0; k < (layers[tmp].chr[j]).num_inputs; k++){
(layers[tmp].chr[j]).errors[k] = dout[0];
(layers[tmp].chr[j]).weights[k] +=
leaning_rate * (layers[tmp].chr[j]).inputs[k] *
(layers[tmp].chr[j]).errors[k];
}
}
for(int i = num_layers - 2; i >= 0; i--){
for(int j = 0; j < layers[i].num_nodes ; j++){
float sum = get_weighted_error(i + 1, j);
for(int k = 0; k < (layers[i].chr[j]).num_inputs; k++){
(layers[i].chr[j]).errors[k] = sum;
(layers[i].chr[j]).weights[k] +=
leaning_rate * (layers[i].chr[j]).inputs[k] * (layers[i].chr[j]).errors[k];
}
}
}
}
float neural :: get_weighted_error(int l, int in){
float sum = 0.0;
for(int j = 0; j < layers[l].num_nodes; j++){
float error = (layers[l].chr[j]).errors[in];
float weight = (layers[l].chr[j]).weights[in];
sum += error * weight;
}
return sum;
}
neural :: ~neural(){
for(int i = 0; i < num_layers; i++){
for(int j = 0; j < layers[i].num_nodes; j++){
delete[] (layers[i].chr[j]).weights;
delete[] (layers[i].chr[j]).inputs;
delete[] (layers[i].chr[j]).errors;
}
delete[] layers[i].chr;
}
delete[] layers;
}