-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl.js
1532 lines (1409 loc) · 48.5 KB
/
rl.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
var R = {}; // the Recurrent library
(function(global) {
"use strict";
// Utility fun
function assert(condition, message) {
// from http://stackoverflow.com/questions/15313418/javascript-assert
if (!condition) {
message = message || "Assertion failed";
if (typeof Error !== "undefined") {
throw new Error(message);
}
throw message; // Fallback
}
}
// Random numbers utils
var return_v = false;
var v_val = 0.0;
var gaussRandom = function() {
if(return_v) {
return_v = false;
return v_val;
}
var u = 2*Math.random()-1;
var v = 2*Math.random()-1;
var r = u*u + v*v;
if(r == 0 || r > 1) return gaussRandom();
var c = Math.sqrt(-2*Math.log(r)/r);
v_val = v*c; // cache this
return_v = true;
return u*c;
}
var randf = function(a, b) { return Math.random()*(b-a)+a; }
var randi = function(a, b) { return Math.floor(Math.random()*(b-a)+a); }
var randn = function(mu, std){ return mu+gaussRandom()*std; }
// helper function returns array of zeros of length n
// and uses typed arrays if available
var zeros = function(n) {
if(typeof(n)==='undefined' || isNaN(n)) { return []; }
if(typeof ArrayBuffer === 'undefined') {
// lacking browser support
var arr = new Array(n);
for(var i=0;i<n;i++) { arr[i] = 0; }
return arr;
} else {
return new Float64Array(n);
}
}
// Mat holds a matrix
var Mat = function(n,d) {
// n is number of rows d is number of columns
this.n = n;
this.d = d;
this.w = zeros(n * d);
this.dw = zeros(n * d);
}
Mat.prototype = {
get: function(row, col) {
// slow but careful accessor function
// we want row-major order
var ix = (this.d * row) + col;
assert(ix >= 0 && ix < this.w.length);
return this.w[ix];
},
set: function(row, col, v) {
// slow but careful accessor function
var ix = (this.d * row) + col;
assert(ix >= 0 && ix < this.w.length);
this.w[ix] = v;
},
setFrom: function(arr) {
for(var i=0,n=arr.length;i<n;i++) {
this.w[i] = arr[i];
}
},
setColumn: function(m, i) {
for(var q=0,n=m.w.length;q<n;q++) {
this.w[(this.d * q) + i] = m.w[q];
}
},
toJSON: function() {
var json = {};
json['n'] = this.n;
json['d'] = this.d;
json['w'] = this.w;
return json;
},
fromJSON: function(json) {
this.n = json.n;
this.d = json.d;
this.w = zeros(this.n * this.d);
this.dw = zeros(this.n * this.d);
for(var i=0,n=this.n * this.d;i<n;i++) {
this.w[i] = json.w[i]; // copy over weights
}
}
}
var copyMat = function(b) {
var a = new Mat(b.n, b.d);
a.setFrom(b.w);
return a;
}
var copyNet = function(net) {
// nets are (k,v) pairs with k = string key, v = Mat()
var new_net = {};
for(var p in net) {
if(net.hasOwnProperty(p)){
new_net[p] = copyMat(net[p]);
}
}
return new_net;
}
var updateMat = function(m, alpha) {
// updates in place
for(var i=0,n=m.n*m.d;i<n;i++) {
if(m.dw[i] !== 0) {
m.w[i] += - alpha * m.dw[i];
m.dw[i] = 0;
}
}
}
var updateNet = function(net, alpha) {
for(var p in net) {
if(net.hasOwnProperty(p)){
updateMat(net[p], alpha);
}
}
}
var netToJSON = function(net) {
var j = {};
for(var p in net) {
if(net.hasOwnProperty(p)){
j[p] = net[p].toJSON();
}
}
return j;
}
var netFromJSON = function(j) {
var net = {};
for(var p in j) {
if(j.hasOwnProperty(p)){
net[p] = new Mat(1,1); // not proud of this
net[p].fromJSON(j[p]);
}
}
return net;
}
var netZeroGrads = function(net) {
for(var p in net) {
if(net.hasOwnProperty(p)){
var mat = net[p];
gradFillConst(mat, 0);
}
}
}
var netFlattenGrads = function(net) {
var n = 0;
for(var p in net) { if(net.hasOwnProperty(p)){ var mat = net[p]; n += mat.dw.length; } }
var g = new Mat(n, 1);
var ix = 0;
for(var p in net) {
if(net.hasOwnProperty(p)){
var mat = net[p];
for(var i=0,m=mat.dw.length;i<m;i++) {
g.w[ix] = mat.dw[i];
ix++;
}
}
}
return g;
}
// return Mat but filled with random numbers from gaussian
var RandMat = function(n,d,mu,std) {
var m = new Mat(n, d);
fillRandn(m,mu,std);
//fillRand(m,-std,std); // kind of :P
return m;
}
// Mat utils
// fill matrix with random gaussian numbers
var fillRandn = function(m, mu, std) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randn(mu, std); } }
var fillRand = function(m, lo, hi) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randf(lo, hi); } }
var gradFillConst = function(m, c) { for(var i=0,n=m.dw.length;i<n;i++) { m.dw[i] = c } }
// Transformer definitions
var Graph = function(needs_backprop) {
if(typeof needs_backprop === 'undefined') { needs_backprop = true; }
this.needs_backprop = needs_backprop;
// this will store a list of functions that perform backprop,
// in their forward pass order. So in backprop we will go
// backwards and evoke each one
this.backprop = [];
}
Graph.prototype = {
backward: function() {
for(var i=this.backprop.length-1;i>=0;i--) {
this.backprop[i](); // tick!
}
},
rowPluck: function(m, ix) {
// pluck a row of m with index ix and return it as col vector
assert(ix >= 0 && ix < m.n);
var d = m.d;
var out = new Mat(d, 1);
for(var i=0,n=d;i<n;i++){ out.w[i] = m.w[d * ix + i]; } // copy over the data
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=d;i<n;i++){ m.dw[d * ix + i] += out.dw[i]; }
}
this.backprop.push(backward);
}
return out;
},
tanh: function(m) {
// tanh nonlinearity
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.tanh(m.w[i]);
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += (1.0 - mwi * mwi) * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
sigmoid: function(m) {
// sigmoid nonlinearity
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = sig(m.w[i]);
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += mwi * (1.0 - mwi) * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
relu: function(m) {
var out = new Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.max(0, m.w[i]); // relu
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
m.dw[i] += m.w[i] > 0 ? out.dw[i] : 0.0;
}
}
this.backprop.push(backward);
}
return out;
},
mul: function(m1, m2) {
// multiply matrices m1 * m2
assert(m1.d === m2.n, 'matmul dimensions misaligned');
var n = m1.n;
var d = m2.d;
var out = new Mat(n,d);
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
var dot = 0.0;
for(var k=0;k<m1.d;k++) { // dot product loop
dot += m1.w[m1.d*i+k] * m2.w[m2.d*k+j];
}
out.w[d*i+j] = dot;
}
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
for(var k=0;k<m1.d;k++) { // dot product loop
var b = out.dw[d*i+j];
m1.dw[m1.d*i+k] += m2.w[m2.d*k+j] * b;
m2.dw[m2.d*k+j] += m1.w[m1.d*i+k] * b;
}
}
}
}
this.backprop.push(backward);
}
return out;
},
add: function(m1, m2) {
assert(m1.w.length === m2.w.length);
var out = new Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] + m2.w[i];
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += out.dw[i];
m2.dw[i] += out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
dot: function(m1, m2) {
// m1 m2 are both column vectors
assert(m1.w.length === m2.w.length);
var out = new Mat(1,1);
var dot = 0.0;
for(var i=0,n=m1.w.length;i<n;i++) {
dot += m1.w[i] * m2.w[i];
}
out.w[0] = dot;
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += m2.w[i] * out.dw[0];
m2.dw[i] += m1.w[i] * out.dw[0];
}
}
this.backprop.push(backward);
}
return out;
},
eltmul: function(m1, m2) {
assert(m1.w.length === m2.w.length);
var out = new Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] * m2.w[i];
}
if(this.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += m2.w[i] * out.dw[i];
m2.dw[i] += m1.w[i] * out.dw[i];
}
}
this.backprop.push(backward);
}
return out;
},
}
var softmax = function(m) {
var out = new Mat(m.n, m.d); // probability volume
var maxval = -999999;
for(var i=0,n=m.w.length;i<n;i++) { if(m.w[i] > maxval) maxval = m.w[i]; }
var s = 0.0;
for(var i=0,n=m.w.length;i<n;i++) {
out.w[i] = Math.exp(m.w[i] - maxval);
s += out.w[i];
}
for(var i=0,n=m.w.length;i<n;i++) { out.w[i] /= s; }
// no backward pass here needed
// since we will use the computed probabilities outside
// to set gradients directly on m
return out;
}
var Solver = function() {
this.decay_rate = 0.999;
this.smooth_eps = 1e-8;
this.step_cache = {};
}
Solver.prototype = {
step: function(model, step_size, regc, clipval) {
// perform parameter update
var solver_stats = {};
var num_clipped = 0;
var num_tot = 0;
for(var k in model) {
if(model.hasOwnProperty(k)) {
var m = model[k]; // mat ref
if(!(k in this.step_cache)) { this.step_cache[k] = new Mat(m.n, m.d); }
var s = this.step_cache[k];
for(var i=0,n=m.w.length;i<n;i++) {
// rmsprop adaptive learning rate
var mdwi = m.dw[i];
s.w[i] = s.w[i] * this.decay_rate + (1.0 - this.decay_rate) * mdwi * mdwi;
// gradient clip
if(mdwi > clipval) {
mdwi = clipval;
num_clipped++;
}
if(mdwi < -clipval) {
mdwi = -clipval;
num_clipped++;
}
num_tot++;
// update (and regularize)
m.w[i] += - step_size * mdwi / Math.sqrt(s.w[i] + this.smooth_eps) - regc * m.w[i];
m.dw[i] = 0; // reset gradients for next iteration
}
}
}
solver_stats['ratio_clipped'] = num_clipped*1.0/num_tot;
return solver_stats;
}
}
var initLSTM = function(input_size, hidden_sizes, output_size) {
// hidden size should be a list
var model = {};
for(var d=0;d<hidden_sizes.length;d++) { // loop over depths
var prev_size = d === 0 ? input_size : hidden_sizes[d - 1];
var hidden_size = hidden_sizes[d];
// gates parameters
model['Wix'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wih'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bi'+d] = new Mat(hidden_size, 1);
model['Wfx'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wfh'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bf'+d] = new Mat(hidden_size, 1);
model['Wox'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Woh'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bo'+d] = new Mat(hidden_size, 1);
// cell write params
model['Wcx'+d] = new RandMat(hidden_size, prev_size , 0, 0.08);
model['Wch'+d] = new RandMat(hidden_size, hidden_size , 0, 0.08);
model['bc'+d] = new Mat(hidden_size, 1);
}
// decoder params
model['Whd'] = new RandMat(output_size, hidden_size, 0, 0.08);
model['bd'] = new Mat(output_size, 1);
return model;
}
var forwardLSTM = function(G, model, hidden_sizes, x, prev) {
// forward prop for a single tick of LSTM
// G is graph to append ops to
// model contains LSTM parameters
// x is 1D column vector with observation
// prev is a struct containing hidden and cell
// from previous iteration
if(prev == null || typeof prev.h === 'undefined') {
var hidden_prevs = [];
var cell_prevs = [];
for(var d=0;d<hidden_sizes.length;d++) {
hidden_prevs.push(new R.Mat(hidden_sizes[d],1));
cell_prevs.push(new R.Mat(hidden_sizes[d],1));
}
} else {
var hidden_prevs = prev.h;
var cell_prevs = prev.c;
}
var hidden = [];
var cell = [];
for(var d=0;d<hidden_sizes.length;d++) {
var input_vector = d === 0 ? x : hidden[d-1];
var hidden_prev = hidden_prevs[d];
var cell_prev = cell_prevs[d];
// input gate
var h0 = G.mul(model['Wix'+d], input_vector);
var h1 = G.mul(model['Wih'+d], hidden_prev);
var input_gate = G.sigmoid(G.add(G.add(h0,h1),model['bi'+d]));
// forget gate
var h2 = G.mul(model['Wfx'+d], input_vector);
var h3 = G.mul(model['Wfh'+d], hidden_prev);
var forget_gate = G.sigmoid(G.add(G.add(h2, h3),model['bf'+d]));
// output gate
var h4 = G.mul(model['Wox'+d], input_vector);
var h5 = G.mul(model['Woh'+d], hidden_prev);
var output_gate = G.sigmoid(G.add(G.add(h4, h5),model['bo'+d]));
// write operation on cells
var h6 = G.mul(model['Wcx'+d], input_vector);
var h7 = G.mul(model['Wch'+d], hidden_prev);
var cell_write = G.tanh(G.add(G.add(h6, h7),model['bc'+d]));
// compute new cell activation
var retain_cell = G.eltmul(forget_gate, cell_prev); // what do we keep from cell
var write_cell = G.eltmul(input_gate, cell_write); // what do we write to cell
var cell_d = G.add(retain_cell, write_cell); // new cell contents
// compute hidden state as gated, saturated cell activations
var hidden_d = G.eltmul(output_gate, G.tanh(cell_d));
hidden.push(hidden_d);
cell.push(cell_d);
}
// one decoder to outputs at end
var output = G.add(G.mul(model['Whd'], hidden[hidden.length - 1]),model['bd']);
// return cell memory, hidden representation and output
return {'h':hidden, 'c':cell, 'o' : output};
}
var sig = function(x) {
// helper function for computing sigmoid
return 1.0/(1+Math.exp(-x));
}
var maxi = function(w) {
// argmax of array w
var maxv = w[0];
var maxix = 0;
for(var i=1,n=w.length;i<n;i++) {
var v = w[i];
if(v > maxv) {
maxix = i;
maxv = v;
}
}
return maxix;
}
var samplei = function(w) {
// sample argmax from w, assuming w are
// probabilities that sum to one
var r = randf(0,1);
var x = 0.0;
var i = 0;
while(true) {
x += w[i];
if(x > r) { return i; }
i++;
}
return w.length - 1; // pretty sure we should never get here?
}
// various utils
global.assert = assert;
global.zeros = zeros;
global.maxi = maxi;
global.samplei = samplei;
global.randi = randi;
global.randn = randn;
global.softmax = softmax;
// classes
global.Mat = Mat;
global.RandMat = RandMat;
global.forwardLSTM = forwardLSTM;
global.initLSTM = initLSTM;
// more utils
global.updateMat = updateMat;
global.updateNet = updateNet;
global.copyMat = copyMat;
global.copyNet = copyNet;
global.netToJSON = netToJSON;
global.netFromJSON = netFromJSON;
global.netZeroGrads = netZeroGrads;
global.netFlattenGrads = netFlattenGrads;
// optimization
global.Solver = Solver;
global.Graph = Graph;
})(R);
// END OF RECURRENTJS
var RL = {};
(function(global) {
"use strict";
// syntactic sugar function for getting default parameter values
var getopt = function(opt, field_name, default_value) {
if(typeof opt === 'undefined') { return default_value; }
return (typeof opt[field_name] !== 'undefined') ? opt[field_name] : default_value;
}
var zeros = R.zeros; // inherit these
var assert = R.assert;
var randi = R.randi;
var randf = R.randf;
var setConst = function(arr, c) {
for(var i=0,n=arr.length;i<n;i++) {
arr[i] = c;
}
}
var sampleWeighted = function(p) {
var r = Math.random();
var c = 0.0;
for(var i=0,n=p.length;i<n;i++) {
c += p[i];
if(c >= r) { return i; }
}
assert(false, 'wtf');
}
// ------
// AGENTS
// ------
// DPAgent performs Value Iteration
// - can also be used for Policy Iteration if you really wanted to
// - requires model of the environment :(
// - does not learn from experience :(
// - assumes finite MDP :(
var DPAgent = function(env, opt) {
this.V = null; // state value function
this.P = null; // policy distribution \pi(s,a)
this.env = env; // store pointer to environment
this.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
this.reset();
}
DPAgent.prototype = {
reset: function() {
// reset the agent's policy and value function
this.ns = this.env.getNumStates();
this.na = this.env.getMaxNumActions();
this.V = zeros(this.ns);
this.P = zeros(this.ns * this.na);
// initialize uniform random policy
for(var s=0;s<this.ns;s++) {
var poss = this.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
this.P[poss[i]*this.ns+s] = 1.0 / poss.length;
}
}
},
act: function(s) {
// behave according to the learned policy
var poss = this.env.allowedActions(s);
var ps = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var prob = this.P[a*this.ns+s];
ps.push(prob);
}
var maxi = sampleWeighted(ps);
return poss[maxi];
},
learn: function() {
// perform a single round of value iteration
self.evaluatePolicy(); // writes this.V
self.updatePolicy(); // writes this.P
},
evaluatePolicy: function() {
// perform a synchronous update of the value function
var Vnew = zeros(this.ns);
for(var s=0;s<this.ns;s++) {
// integrate over actions in a stochastic policy
// note that we assume that policy probability mass over allowed actions sums to one
var v = 0.0;
var poss = this.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var prob = this.P[a*this.ns+s]; // probability of taking action under policy
if(prob === 0) { continue; } // no contribution, skip for speed
var ns = this.env.nextStateDistribution(s,a);
var rs = this.env.reward(s,a,ns); // reward for s->a->ns transition
v += prob * (rs + this.gamma * this.V[ns]);
}
Vnew[s] = v;
}
this.V = Vnew; // swap
},
updatePolicy: function() {
// update policy to be greedy w.r.t. learned Value function
for(var s=0;s<this.ns;s++) {
var poss = this.env.allowedActions(s);
// compute value of taking each allowed action
var vmax, nmax;
var vs = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var ns = this.env.nextStateDistribution(s,a);
var rs = this.env.reward(s,a,ns);
var v = rs + this.gamma * this.V[ns];
vs.push(v);
if(i === 0 || v > vmax) { vmax = v; nmax = 1; }
else if(v === vmax) { nmax += 1; }
}
// update policy smoothly across all argmaxy actions
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
this.P[a*this.ns+s] = (vs[i] === vmax) ? 1.0/nmax : 0.0;
}
}
},
}
// QAgent uses TD (Q-Learning, SARSA)
// - does not require environment model :)
// - learns from experience :)
var TDAgent = function(env, opt) {
this.update = getopt(opt, 'update', 'qlearn'); // qlearn | sarsa
this.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
this.epsilon = getopt(opt, 'epsilon', 0.1); // for epsilon-greedy policy
this.alpha = getopt(opt, 'alpha', 0.01); // value function learning rate
// class allows non-deterministic policy, and smoothly regressing towards the optimal policy based on Q
this.smooth_policy_update = getopt(opt, 'smooth_policy_update', false);
this.beta = getopt(opt, 'beta', 0.01); // learning rate for policy, if smooth updates are on
// eligibility traces
this.lambda = getopt(opt, 'lambda', 0); // eligibility trace decay. 0 = no eligibility traces used
this.replacing_traces = getopt(opt, 'replacing_traces', true);
// optional optimistic initial values
this.q_init_val = getopt(opt, 'q_init_val', 0);
this.planN = getopt(opt, 'planN', 0); // number of planning steps per learning iteration (0 = no planning)
this.Q = null; // state action value function
this.P = null; // policy distribution \pi(s,a)
this.e = null; // eligibility trace
this.env_model_s = null;; // environment model (s,a) -> (s',r)
this.env_model_r = null;; // environment model (s,a) -> (s',r)
this.env = env; // store pointer to environment
this.reset();
}
TDAgent.prototype = {
reset: function(){
// reset the agent's policy and value function
this.ns = this.env.getNumStates();
this.na = this.env.getMaxNumActions();
this.Q = zeros(this.ns * this.na);
if(this.q_init_val !== 0) { setConst(this.Q, this.q_init_val); }
this.P = zeros(this.ns * this.na);
this.e = zeros(this.ns * this.na);
// model/planning vars
this.env_model_s = zeros(this.ns * this.na);
setConst(this.env_model_s, -1); // init to -1 so we can test if we saw the state before
this.env_model_r = zeros(this.ns * this.na);
this.sa_seen = [];
this.pq = zeros(this.ns * this.na);
// initialize uniform random policy
for(var s=0;s<this.ns;s++) {
var poss = this.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
this.P[poss[i]*this.ns+s] = 1.0 / poss.length;
}
}
// agent memory, needed for streaming updates
// (s0,a0,r0,s1,a1,r1,...)
this.r0 = null;
this.s0 = null;
this.s1 = null;
this.a0 = null;
this.a1 = null;
},
resetEpisode: function() {
// an episode finished
},
act: function(s){
// act according to epsilon greedy policy
var poss = this.env.allowedActions(s);
var probs = [];
for(var i=0,n=poss.length;i<n;i++) {
probs.push(this.P[poss[i]*this.ns+s]);
}
// epsilon greedy policy
if(Math.random() < this.epsilon) {
var a = poss[randi(0,poss.length)]; // random available action
this.explored = true;
} else {
var a = poss[sampleWeighted(probs)];
this.explored = false;
}
// shift state memory
this.s0 = this.s1;
this.a0 = this.a1;
this.s1 = s;
this.a1 = a;
return a;
},
learn: function(r1){
// takes reward for previous action, which came from a call to act()
if(!(this.r0 == null)) {
this.learnFromTuple(this.s0, this.a0, this.r0, this.s1, this.a1, this.lambda);
if(this.planN > 0) {
this.updateModel(this.s0, this.a0, this.r0, this.s1);
this.plan();
}
}
this.r0 = r1; // store this for next update
},
updateModel: function(s0, a0, r0, s1) {
// transition (s0,a0) -> (r0,s1) was observed. Update environment model
var sa = a0 * this.ns + s0;
if(this.env_model_s[sa] === -1) {
// first time we see this state action
this.sa_seen.push(a0 * this.ns + s0); // add as seen state
}
this.env_model_s[sa] = s1;
this.env_model_r[sa] = r0;
},
plan: function() {
// order the states based on current priority queue information
var spq = [];
for(var i=0,n=this.sa_seen.length;i<n;i++) {
var sa = this.sa_seen[i];
var sap = this.pq[sa];
if(sap > 1e-5) { // gain a bit of efficiency
spq.push({sa:sa, p:sap});
}
}
spq.sort(function(a,b){ return a.p < b.p ? 1 : -1});
// perform the updates
var nsteps = Math.min(this.planN, spq.length);
for(var k=0;k<nsteps;k++) {
// random exploration
//var i = randi(0, this.sa_seen.length); // pick random prev seen state action
//var s0a0 = this.sa_seen[i];
var s0a0 = spq[k].sa;
this.pq[s0a0] = 0; // erase priority, since we're backing up this state
var s0 = s0a0 % this.ns;
var a0 = Math.floor(s0a0 / this.ns);
var r0 = this.env_model_r[s0a0];
var s1 = this.env_model_s[s0a0];
var a1 = -1; // not used for Q learning
if(this.update === 'sarsa') {
// generate random action?...
var poss = this.env.allowedActions(s1);
var a1 = poss[randi(0,poss.length)];
}
this.learnFromTuple(s0, a0, r0, s1, a1, 0); // note lambda = 0 - shouldnt use eligibility trace here
}
},
learnFromTuple: function(s0, a0, r0, s1, a1, lambda) {
var sa = a0 * this.ns + s0;
// calculate the target for Q(s,a)
if(this.update === 'qlearn') {
// Q learning target is Q(s0,a0) = r0 + gamma * max_a Q[s1,a]
var poss = this.env.allowedActions(s1);
var qmax = 0;
for(var i=0,n=poss.length;i<n;i++) {
var s1a = poss[i] * this.ns + s1;
var qval = this.Q[s1a];
if(i === 0 || qval > qmax) { qmax = qval; }
}
var target = r0 + this.gamma * qmax;
} else if(this.update === 'sarsa') {
// SARSA target is Q(s0,a0) = r0 + gamma * Q[s1,a1]
var s1a1 = a1 * this.ns + s1;
var target = r0 + this.gamma * this.Q[s1a1];
}
if(lambda > 0) {
// perform an eligibility trace update
if(this.replacing_traces) {
this.e[sa] = 1;
} else {
this.e[sa] += 1;
}
var edecay = lambda * this.gamma;
var state_update = zeros(this.ns);
for(var s=0;s<this.ns;s++) {
var poss = this.env.allowedActions(s);
for(var i=0;i<poss.length;i++) {
var a = poss[i];
var saloop = a * this.ns + s;
var esa = this.e[saloop];
var update = this.alpha * esa * (target - this.Q[saloop]);
this.Q[saloop] += update;
this.updatePriority(s, a, update);
this.e[saloop] *= edecay;
var u = Math.abs(update);
if(u > state_update[s]) { state_update[s] = u; }
}
}
for(var s=0;s<this.ns;s++) {
if(state_update[s] > 1e-5) { // save efficiency here
this.updatePolicy(s);
}
}
if(this.explored && this.update === 'qlearn') {
// have to wipe the trace since q learning is off-policy :(
this.e = zeros(this.ns * this.na);
}
} else {
// simpler and faster update without eligibility trace
// update Q[sa] towards it with some step size
var update = this.alpha * (target - this.Q[sa]);
this.Q[sa] += update;
this.updatePriority(s0, a0, update);
// update the policy to reflect the change (if appropriate)
this.updatePolicy(s0);
}
},
updatePriority: function(s,a,u) {
// used in planning. Invoked when Q[sa] += update
// we should find all states that lead to (s,a) and upgrade their priority
// of being update in the next planning step
u = Math.abs(u);
if(u < 1e-5) { return; } // for efficiency skip small updates
if(this.planN === 0) { return; } // there is no planning to be done, skip.
for(var si=0;si<this.ns;si++) {
// note we are also iterating over impossible actions at all states,
// but this should be okay because their env_model_s should simply be -1
// as initialized, so they will never be predicted to point to any state
// because they will never be observed, and hence never be added to the model
for(var ai=0;ai<this.na;ai++) {
var siai = ai * this.ns + si;
if(this.env_model_s[siai] === s) {
// this state leads to s, add it to priority queue
this.pq[siai] += u;
}
}
}
},
updatePolicy: function(s) {
var poss = this.env.allowedActions(s);
// set policy at s to be the action that achieves max_a Q(s,a)
// first find the maxy Q values
var qmax, nmax;
var qs = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var qval = this.Q[a*this.ns+s];
qs.push(qval);
if(i === 0 || qval > qmax) { qmax = qval; nmax = 1; }
else if(qval === qmax) { nmax += 1; }
}
// now update the policy smoothly towards the argmaxy actions
var psum = 0.0;
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var target = (qs[i] === qmax) ? 1.0/nmax : 0.0;
var ix = a*this.ns+s;
if(this.smooth_policy_update) {
// slightly hacky :p
this.P[ix] += this.beta * (target - this.P[ix]);
psum += this.P[ix];
} else {
// set hard target
this.P[ix] = target;
}
}
if(this.smooth_policy_update) {
// renomalize P if we're using smooth policy updates
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
this.P[a*this.ns+s] /= psum;
}
}
}
}
var DQNAgent = function(env, opt) {
this.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
this.epsilon = getopt(opt, 'epsilon', 0.1); // for epsilon-greedy policy
this.alpha = getopt(opt, 'alpha', 0.01); // value function learning rate
this.experience_add_every = getopt(opt, 'experience_add_every', 25); // number of time steps before we add another experience to replay memory
this.experience_size = getopt(opt, 'experience_size', 5000); // size of experience replay
this.learning_steps_per_iteration = getopt(opt, 'learning_steps_per_iteration', 10);
this.tderror_clamp = getopt(opt, 'tderror_clamp', 1.0);
this.num_hidden_units = getopt(opt, 'num_hidden_units', 100);
this.env = env;
this.reset();
}
DQNAgent.prototype = {
reset: function() {
this.nh = this.num_hidden_units; // number of hidden units
this.ns = this.env.getNumStates();