-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrejection sampling.py
71 lines (53 loc) · 1.52 KB
/
rejection sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
'''
this is a basic example for rejection sampling,and importance sampling
'''
import numpy as np
import scipy.stats as st
import seaborn as sns
import matplotlib.pyplot as plt
import random
sns.set()
#create target distribution P(x)
def P(x):
N=st.norm.pdf(x,loc=0,scale=1)+st.norm.pdf(x,loc=2,scale=3)
return N
#create gaussian Q(x) proposal distribution
def Q(x):
return st.norm.pdf(x, loc=0, scale=3.5)
def rejection_sampling_code(iterations=100):
samples=[]
i=0
while i<iterations:
x_i=np.random.normal(0,2)#point sampled from Q
u=np.random.uniform(0,1)#point sampled from uniform distribution
if u<(P(x_i)/c*Q(x_i)):
samples.append(x_i)
i=i+1
else:
i=i+1
return np.array(samples)
X=np.arange(-10, 10)
c = max(np.divide(P(X), Q(X)))
samples=rejection_sampling_code(10000)
#importance sampling -choosing the right Q(X)
#choose any functions
def H(y):
return y**2+8
n=len(P(X))
miu=(1/n)*np.sum(np.dot(P(X)/Q(X),H(X)))
#we want to pick the Q that has smallest variance of H(x)*P(x)/Q(x)
E_q=miu#from central limit theoram it equals...
w=np.dot(P(X)/Q(X),H(X))
VAR_fw=E_q*np.power(H(X),2)*np.power(w,2)
arg=np.abs(H(X))*P(X)
def integratation(A,X):
'''
a basic numeric integral
'''
h=(X[-1]-X[0])/len(X)
I=h*(A[0]+np.sum(A[1:-2])+0.5*A[-1])
return I
Integral=integratation(arg,X)
#from jensen in equallity
#E_q>integral
Q_best=arg/Integral