-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOR-UnDir.py
184 lines (147 loc) · 6.45 KB
/
OR-UnDir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
============================================================================================
A program to compute the Ollivier-Ricci curvature of a given undirected graph.
Reference:
(1) A. Samal, R.P. Sreejith, J. Gu, S. Liu, E. Saucan & J. Jost, Comparative analysis of two discretizations of Ricci curvature for complex networks, Scientific Reports 8: 8650 (2018).
(2) C.C. Ni, Y.Y. Lin, F. Luo & J. Gao. Community detection on networks with ricci flow. Scientific reports 9:9984 (2019).
The following is a modified version of the code that can be found in Chien-Chun Ni's github repository : https://github.com/saibalmars/GraphRicciCurvature.
============================================================================================
"""
print ("-"*75)
import time, datetime
import cvxpy as cvx
import networkx as nx
import numpy as np
import sys
now = datetime.datetime.now()
start_time = time.time()
print ("Current date and time : ")
print (now.strftime("%Y-%m-%d %H:%M:%S"))
print ("="*25)
#If edge has Weight EW = 1 else EW = 0
EW=int(sys.argv[1])
EF=open(sys.argv[3], 'w')
#Creating the graph from the edge file
Graph=nx.Graph()
for i in open(sys.argv[2], 'r'):
e = i.strip().split('\t')
if EW == 0 and e[0]!=e[1]:
Graph.add_edge(e[0], e[1], weight = 1)
elif EW == 1 and e[0]!=e[1]:
Graph.add_edge(e[0], e[1], weight = float(e[2]))
edgesize=Graph.number_of_edges()
nodesize=Graph.number_of_nodes()
print ("Graph has \"%d\" edges and \"%d\" nodes"%(edgesize, nodesize))
# Function for displaying the updates by a progress bar in console
#===============================================================================
def Progress(progress):
barLength = 50
status = ""
if isinstance(progress, int):
progress = float(progress)
if not isinstance(progress, float):
progress = 0
status = "error: progress var must be float\r\n"
if progress < 0:
progress = 0
status = "Halt...\r\n"
if progress >= 1:
progress = 1
status = "Done...\r\n"
block = int(round(barLength*progress))
text = "\rPercent: [{0}] {1}% {2}".format( "="*block + " "*(barLength-block), round((progress*100),3), status)
sys.stdout.write(text)
sys.stdout.flush()
# Function to compute the Olliver ricci curvature for a given edge
#===============================================================================
def RicciCurvature_Edge(G, vertex_1, vertex_2, alpha, length):
EPSILON = 1e-7 # to prevent division by zero
assert vertex_1 != vertex_2, "Self loop is not allowed."
if length[vertex_1][vertex_2] < EPSILON:
assert "ricciCurvature" in G[vertex_1][vertex_2], "Divided by Zero and no ricci curvature exist in Graph!"
print("Zero Weight edge detected, return previous ricci Curvature instead.")
return G[vertex_1][vertex_2]["ricciCurvature"]
vertex_1_nbr = list(G.neighbors(vertex_1))
vertex_2_nbr = list(G.neighbors(vertex_2))
assert len(vertex_1_nbr) > 0, "vertex_1 Nbr=0?"
assert len(vertex_2_nbr) > 0, "vertex_2 Nbr=0?" + str(vertex_1) + " " + str(vertex_2)
x = [(1.0 - alpha) / len(vertex_1_nbr)] * len(vertex_1_nbr)
y = [(1.0 - alpha) / len(vertex_2_nbr)] * len(vertex_2_nbr)
vertex_1_nbr.append(vertex_1)
vertex_2_nbr.append(vertex_2)
x.append(alpha)
y.append(alpha)
# construct the cost dictionary from x to y
d = np.zeros((len(x), len(y)))
for i, s in enumerate(vertex_1_nbr):
for j, t in enumerate(vertex_2_nbr):
assert t in length[s], "vertex_2 node not in list, should not happened, pair (%d, %d)" % (s, t)
d[i][j] = length[s][t]
x = np.array([x]).T # the mass that vertex_1 neighborhood initially owned
y = np.array([y]).T # the mass that vertex_2 neighborhood needs to received
t0 = time.time()
rho = cvx.Variable(shape=(len(vertex_2_nbr), len(vertex_1_nbr)))
# objective function d(x,y) * rho * x, need to do element-wise multiply here
obj = cvx.Minimize(cvx.sum(cvx.multiply(np.multiply(d.T, x.T), rho)))
# \sigma_i rho_{ij}=[1,1,...,1]
vertex_1_sum = cvx.sum(rho, axis=0)
constrains = [rho * x == y, vertex_1_sum == np.ones(len(vertex_1_nbr)), 0 <= rho, rho <= 1]
prob = cvx.Problem(obj, constrains)
m = prob.solve(solver='ECOS')
#print(time.time() - t0, " secs for cvxpy.",)
result = 1 - (m / length[vertex_1][vertex_2]) # divided by the length of d(i, j)
#print("#vertex_1_nbr: %d, #vertex_2_nbr: %d, Ricci curvature = %f "%(len(vertex_1_nbr), len(vertex_2_nbr), result))
#print("%s\t%s\t%f"%(vertex_1, vertex_2, result))
EF.write("%s\t%s\t%f\n"%(vertex_1, vertex_2, result*2))
return result
# Function Compute ricci curvature for all nodes and all edges in G.
#================================================================================
def RicciCurvature(G, alpha=0.5, weight=None):
# Construct the all pair shortest path lookup
t0 = time.time()
print ("> Calculate Dijkstra path length")
print ("Time :")
now = datetime.datetime.now()
print (now.strftime("%H:%M:%S"))
length = dict(nx.all_pairs_dijkstra_path_length(G, weight=weight))
print ("Finished :")
now = datetime.datetime.now()
print ("Time taken = ", round((time.time() - t0)/60.0), "min")
# compute ricci curvature
no=1.0
print ("> Calculate Olliver-Ricci for each edge")
for s, t in G.edges():
G[s][t]['ricciCurvature'] = RicciCurvature_Edge(G, vertex_1=s, vertex_2=t, alpha=alpha, length=length)
Progress(no/edgesize) # Progress bar on terminal
no+=1
# compute node ricci curvature to graph G
print("> Node ricci curvature started")
NF=open(sys.argv[4],'w')
no=1.0
for n in G.nodes():
rcsum = 0 # sum of the neighbor Ricci curvature
if G.degree(n) != 0:
for nbr in G.neighbors(n):
if 'ricciCurvature' in G[n][nbr]:
rcsum += G[n][nbr]['ricciCurvature']
# assign the node Ricci curvature to be the average of node's adjacency edges
G.node[n]['ricciCurvature'] = rcsum / G.degree(n)
NF.write("%s\t%f\t%f\n"%(n, G.node[n]['ricciCurvature'], rcsum))
#else:
# NF.write("%s\t%f\n"%(n, 3))
Progress(no/nodesize)
no+=1
#print("> Node ricci curvature computation done.")'''
return G
#================================================================================
# Calling the main function to compute Olliver-Ricci curvature of the graph
print ("Olliver-Ricci curvature for edge")
OlliverRicci=RicciCurvature(Graph, alpha=0.5, weight='weight')
print ("Current date and time : ")
now = datetime.datetime.now()
print (now.strftime("%Y-%m-%d %H:%M:%S"))
end_time = time.time()
sec=(-start_time+end_time)
print ("="*25)
print ("Time taken = %f min (%f sec)"%(sec/60, sec))
print ("-"*75)