forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
som_linkage.m
291 lines (261 loc) · 9.9 KB
/
som_linkage.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
function [Z,order,Md] = som_linkage(sM,varargin)
%SOM_LINKAGE Make a hierarchical linkage of the SOM map units.
%
% [Z,order,Dist] = som_linkage(sM, [[argID,] value, ...])
%
% Z = som_linkage(sM);
% Z = som_linkage(D,'complete');
% Z = som_linkage(sM,'single','ignore',find(~som_hits(sM,D)));
% Z = som_linkage(sM,pdist(sM.codebook,'mahal'));
% som_dendrogram(Z);
%
% Input and output arguments ([]'s are optional):
% sM (struct) map or data struct to be clustered
% (matrix) size dlen x dim, a data set: the matrix must not
% contain any NaN's!
% [argID, (string) See below. The values which are unambiguous can
% value] (varies) be given without the preceeding argID.
%
% Z (matrix) size dlen-1 x 3, the linkage info
% Z(i,1) and Z(i,2) hold the indeces of clusters
% combined on level i (starting from bottom). The new
% cluster has index dlen+i. The initial cluster
% index of each unit is its linear index in the
% original data matrix. Z(i,3) is the distance
% between the combined clusters. See LINKAGE
% function in the Statistics Toolbox.
% The ignored samples are listed at the
% end of the Z-matrix and have Z(*,3) == Inf
% Dist (matrix) size dlen x dlen, pairwise distance matrix
%
% Here are the valid argument IDs and corresponding values. The values
% which are unambiguous (marked with '*') can be given without the
% preceeding argID.
% 'linkage' *(string) the linkage criteria to use: 'single' (the
% default), 'average' or 'complete'
% 'topol' *(struct) topology struct
% 'connect' *(string) 'neighbors' or 'any' (default), whether the
% connections should be allowed only between
% neighbors or between any vectors
% (matrix) size dlen x dlen indicating the connections
% between vectors
% (scalar) the N-neighborhood upto which the connections
% should be formed (implies 'neighbors')
% 'ignore' (vector) the units/vectors which should be ignored
% 'dist' (matrix) size dlen x dlen, pairwise distance matrix to
% be used instead of euclidian distances
% (vector) as the output of PDIST function
% (scalar) distance norm to use (euclidian = 2)
% 'mask' (vector) size dim x 1, the search mask used to
% weight distance calculation. By default
% sM.mask or a vector of ones is used.
%
% Note that together 'connect'='neighbors' and 'ignore' may form
% areas on the map which will never be connected: connections
% across the ignored map units simply do not exist.
%
% See also KMEANS_CLUSTERS, LINKAGE, PDIST, DENDROGRAM.
% Copyright (c) 2000 by Juha Vesanto
% Contributed to SOM Toolbox on June 16th, 2000 by Juha Vesanto
% http://www.cis.hut.fi/projects/somtoolbox/
% Version 2.0beta juuso 160600
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% input arguments
% the data
if isstruct(sM),
if isfield(sM,'data'), D = sM.data; sT = []; mask = [];
else D = sM.codebook; sT = sM.topol; mask = sM.mask;
end
else
D = sM; sT = []; mask = [];
end
[dlen dim] = size(D);
if isempty(mask), mask = ones(dim,1); end
if any(isnan(D(:))), error('Data matrix must not have any NaNs.'); end
% varargin
Md = 2;
linkage = 'single';
ignore_units = [];
constrained = 0;
i=1;
while i<=length(varargin),
argok = 1;
if ischar(varargin{i}),
switch varargin{i},
% argument IDs
case {'topol','som_topol','sTopol'}, i=i+1; sT = varargin{i};
case 'connect', i=i+1;
if ischar(varargin{i}), constrained = ~strcmp(varargin{i},'any');
else constrained = varargin{i}; end
case 'ignore', i=i+1; ignore_units = varargin{i};
case 'dist', i=i+1; Md = varargin{i};
case 'linkage', i=i+1; linkage = varargin{i};
case 'mask', i=i+1; mask = varargin{i};
case 'tracking',i=i+1; tracking = varargin{i};
% unambiguous values
case 'neighbors', constrained = 1;
case 'any', constrained = 0;
case {'single','average','complete'}, linkage = varargin{i};
otherwise argok=0;
end
elseif isstruct(varargin{i}) && isfield(varargin{i},'type'),
switch varargin{i}(1).type,
case 'som_topol', sTopol = varargin{i};
otherwise argok=0;
end
else
argok = 0;
end
if ~argok,
disp(['(som_linkage) Ignoring invalid argument #' num2str(i+1)]);
end
i = i+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% distance matrix
% given distance matrix % jh corrected this place totally 27.3. 03
if (numel(Md)==1), % no explicit distance matrix, set flag
q=2; % 17.2.03 kr added some brackets
else
if (numel(Md)<dlen^2), % check pdist form
Md = squareform(Md); % transform to ordinary square diastance matrix
end
% jh: 27.3. 03 "calculate pairwise dist. matrix" see approx. 20 lines below
% sets self-distance to Inf! This must be set here also,
% otherwise clustering fails for user defined dist. matrix!
Md(eye(dlen)==1)=Inf;
end
% neighborhood constraint
if length(constrained)==1 && constrained>0,
Ne1 = som_unit_neighs(sT);
Conn = som_neighborhood(Ne1,constrained);
Conn(~isfinite(Conn(:))) = 0;
else Conn = constrained; end
if ~isempty(Conn), for i=1:dlen, C(i,i) = 1; end, end
% pairwise distance matrix across connected units
n = size(D,1);
if numel(Md)>1,
% remove distances between non-neighbors
if constrained, for i = 1:n, Md(i,find(Conn(i,:)==0)) = Inf; end, end
else
% calculate pairwise distance matrix
q = Md;
Md = zeros(n,n)+Inf;
if ~constrained && q==2, % fast for the default case
for i = 1:n-1,
x = D(i,:);
inds = [(i+1):n];
Diff = D(inds,:) - x(ones(n-i,1),:);
Md(inds,i) = sqrt((Diff.^2)*mask);
Md(i,inds) = Md(inds,i)';
end
else
for i = 1:n-1,
inds = find(Conn(i,:)==1);
inds = inds(find(inds>i));
Diff = abs(D(inds,:) - D(i*ones(length(inds),1),:));
switch q,
case 1, dist = Diff*mask;
case 2, dist = sqrt((Diff.^2)*mask);
case Inf, dist = max(Diff,[],2);
otherwise, dist = ((Diff.^q)*mask).^(1/q);
end
Md(inds,i) = dist;
Md(i,inds) = dist';
end
end
end
% set distances to ignored units to Inf
if ~isempty(ignore_units),
Md(ignore_units,:) = Inf;
Md(:,ignore_units) = Inf;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% construct dendrogram
Z = zeros(n-1,3)+NaN; % merged clusters and distance for each step
clusters = 1:dlen; % each vector is at first in its own cluster
Cd = Md; % distances between clusters
h = waitbar(0,'Constructing hierarchical clustering');
for i=1:n-1,
% tracking
waitbar(i/(n-1),h);
%% combine two closest clusters
% find the clusters which are closest to each other (c1 and c2)
[d,ind] = min(min(Cd));
if ~isfinite(d), break; end % no more connected clusters
[d,c1] = min(Cd(:,ind)); % cluster1
c2 = clusters(ind); % cluster2
% combine the two clusters
c1_inds = find(clusters==c1); % vectors belonging to c1
c2_inds = find(clusters==c2); % vectors belonging to c2
c_inds = [c1_inds, c2_inds]; % members of the new cluster
% new cluster index = bigger cluster
if length(c2_inds)>length(c1_inds), c=c2; k=c1; else c=c1; k=c2; end
clusters(c_inds) = c; % update cluster info
Z(i,:) = [c, k, d]; % save info into Z
%% update cluster distances
% remove the subclusters from the Cd table
Cd(c_inds,c_inds) = Inf; % distance of the cluster to its members = Inf
k_inds = c_inds(c_inds ~= c); % vectors of the smaller cluster
Cd(k_inds,:) = Inf; % distance of the subclusters to
Cd(:,k_inds) = Inf; % other clusters = Inf
% update the distance of this cluster to the other clusters
cl = unique(clusters(clusters ~= c)); % indeces of all other clusters
if ~isempty(cl), % added since v6.5 works differently than 6.1
for l=cl,
o_inds = find(clusters==l); % indeces belonging to cluster k
vd = Md(c_inds,o_inds); % distances between vectors in c and k
vd = vd(isfinite(vd(:))); % remove infinite distances (no connection)
len = length(vd);
if ~len, % if the two clusters are not connected, their distance in Inf
sd = Inf;
else % otherwise, calculate the distance between them
switch linkage,
case 'single', sd = min(vd);
case 'average', sd = sum(vd)/len;
case 'complete', sd = max(vd);
otherwise, error(['Unknown set distance: ' linkage]);
end
end
Cd(c,l) = sd; Cd(l,c) = sd;
end
end
end
close(h);
last = Z(i,1);
if isnan(last),
last = Z(i-1,1);
rest = setdiff(unique(clusters),last);
Z(i:n-1,1) = rest';
Z(i:n-1,2) = last;
Z(i:n-1,3) = Inf;
i = i - 1;
else
rest = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% return values
% calculate the order of samples
order = last;
% go through the combination matrix from top to down
for k=i:-1:1,
c = Z(k,1); k = Z(k,2); % what (k) change to what (c)
j = find(order==c); % the occurance of c in order
if j == length(order), order = [order k]; % put k behind c
else order = [order(1:j) k order(j+1:end)];
end
end
order = [rest, order];
% to maintain compatibility with Statistics Toolbox, the values in
% Z must be yet transformed so that they are similar to the output
% of LINKAGE function
Zs = Z;
current_cluster = 1:dlen;
for i=1:size(Z,1),
Zs(i,1) = current_cluster(Z(i,1));
Zs(i,2) = current_cluster(Z(i,2));
current_cluster(Z(i,[1 2])) = dlen+i;
end
Z = Zs;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%